
AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES

HAYATO NASU

Abstract. We present a type theory called fibrational virtual double type theory (FVDblTT) designed specifi-
cally for formal category theory, which is a succinct reformulation of New and Licata’s Virtual Equipment Type
Theory (VETT). FVDblTT formalizes reasoning on isomorphisms that are commonly employed in category the-
ory. Virtual double categories are one of the most successful frameworks for developing formal category theory,
and FVDblTT has them as a theoretical foundation. We validate its worth as an internal language of virtual
double categories by providing a syntax-semantics duality between virtual double categories and specifications
in FVDblTT as a biadjunction.

1. Introduction

Category theory is the art of studying mathematical objects through how they interact with each other. It cap-
tures how mathematical objects behave not from their internal structures but from (homo)morphisms between
them and describes their properties systematically with universal properties or other concepts. This abundant
expressiveness of category theory led to the development of categorical semantics, the way to take models of
type theories or programming languages in categorical structures. Good examples include Lawvere theories
in categories with finite products [Law63], simply typed lambda calculus in cartesian closed categories [LS86],
extensional Martin-Löf type theory in locally cartesian closed categories [See84], and homotopy type theory in
∞-groupoids [HS98, Str14]. Thus, it has been discovered that there are dualities between syntactical datasets
and categorical structures [Jac99, CD14], endorsing the principle that type theory corresponds to category
theory.

Since categories themselves are mathematical objects, categorical analysis of categories is crucial. This
methodology is called formal category theory [Gra74] by category theorists; see Subsection1.1 for further details.
In short, it is a way to develop category theory in a general categorical structure, such as a 2-category, by
imagining it as the totality of categories. Here, the adjective “formal” does not imply that the theory is written
in a “formal language,” but having a formal language for formal category theory is still engaging. New and
Licata’s Virtual Equipment Type Theory (VETT) [NL23] is pioneering in this direction. It is designed to
facilitate the use of category theory in formal proofs by diminishing tedious but straightforward proofs, such as
checking naturality or functoriality.

This paper aims to give an alternative type theory called fibrational virtual double type theory (FVDblTT)
for the same purpose, which is more succinct and manageable, and to demonstrate its value from the viewpoint
of 2-category theory by constructing a syntax-semantics biadjunction. In this sense, FVDblTT is an internal
language for corresponding categorical structures: fibrational virtual double categories. Each fibrational virtual
double category can be seen as a totality of categories of some kind, such as enriched categories or internal
categories, and the type theory treats them as if they were mere categories. Arguing category theories is
then divided into two parts: one is a common argument independent of different category theories, which
occasionally falls into abstract nonsense, and the other is a specific discussion particular to a certain category
theory. What we can do with FVDblTT is to deal with massive proofs belonging to the former part in the
formal language and make people focus on the latter part. Proving something in FVDblTT implies proving
corresponding statements in those various category theories that fibrational virtual double categories can model.
A comparison of FVDblTT with VETT requires a detailed discussion, which is given in Section 6.

FVDblTT handles the four fundamental components of category theory: categories, functors, natural trans-
formations, and profunctors.1 A profunctor from a category C to a category D, written as P (−, •) : C D, is a
functor from Cop × D to the category of sets Set, which is an enhancement of a presheaf on C and a copresheaf
on D. It has been recognized that profunctors or their counterparts cannot be avoided in formal category theory
[SW78, Woo82]. A naive framework to address them is double categories, which are compositional structures
with two kinds of arrows, vertical and horizontal, and cells between them, which model functors, profunctors, and
natural transformations. However, the composition of profunctors is not always well-defined since it is defined
by a certain kind of colimits called coends in Set, which do not always exist because of the size of the categories.
One way to overcome this difficulty is to consider virtual cells as a generalization of cells in double categories
and forget about the composition of profunctors. A virtual cell (Figure 1) in the virtual double category of

Date: October 10, 2024.
1Profunctors are also called distributors or bimodules.

1

2 HAYATO NASU

profunctors PROF is defined as a natural family of functions µC0,...,Cn from P1(C0, C1) × · · · × Pn(Cn−1, Cn) to
Q(F (C0), G(Cn)) for C0, . . . , Cn. What we want to apprehend by composing profunctors is now absorbed into
the virtual cells since, if we suppose the top boundary of the cell µ has a composite, then the above family of
functions coincides with the unzipped data of the same cell but with its top boundary replaced by the composite.

A structure defined on the basis of these virtual cells is called a virtual double category (VDC), and it is a
widely accepted foundation of formal category theory. While its name first appeared in the work of Cruttwell
and Shulman [CS10], the idea of virtual double categories has been studied in various forms in the past under
different names such as fc-multicategories [Lei02, Lei04], and lax double categories [DPP06]. For these years,
virtual double categories have gained the status of a guidepost for working out new category theories, especially
in the ∞-categorical setting [GH15, RV17, Rui24].

C0 C1 · · · Cn

D0 D1

F

P1

µ

Pn

G

Q

Figure 1. A general vir-
tual cell in PROF.

Type I type , Term ` ⊢ s : I ,
Protype ` # ´ ⊢ ¸ protype ,

Proterm `0 # . . . # `n | a1 : ¸1 # . . . # an : ¸n ⊢ — : ˛ ,
Protype Isomorphism ` # ´ ⊢ ˇ : ¸ ∼≡ ˛ .

Figure 2. Judgments of FVDblTT. (` ,´, . . .
are contexts like x1 : I1, . . . , xn : In.)

Central judgments of FVDblTT are shown in Figure 2. Models of the type theory are taken in fibrational
virtual double categories2. Fibrationality relates to the possibility of substitution of tight arrows (functors)
into a loose arrow (profunctor) as P (F−, G•), which is indispensable to performing category theory. Let
us illustrate how the basic components of the type theory are interpreted using PROF. Types, terms, and
protypes are interpreted as categories, functors, and profunctors. Proterms are interpreted as virtual cells as
Figure 1 but are limited to those with the functors on both sides being identities. This limitation renders
the linearized presentation of virtual cells in the type theory without losing the expressive power owing to
fibrationality. Derivation rules for these constituents of the type theory are given in line with the axioms of
virtual double categories, which are naturally interpreted in PROF. Table 1 is an example of the interpretation
of the prosubstitution in proterms within PROF.

Prosubstitution into a protype
x0 : I0 # x1 : I1 | a1 : ¸1 ⊢ —{a1} : ˛1

x1 : I1 # x2 : I2 | a2 : ¸2 ⊢ {a2} : ˛2

x0 : I0 # x1 : I1 # x2 : I2 | b1 : ˛1 # b2 : ˛2 ⊢ –{˛1 # ˛2} : ‚
x0 : I0 # x1 : I1 # x2 : I2 | a1 : ¸1 # a2 : ¸2 ⊢ –{—{a1} # {a2}} : ‚

Category Theory – the interpretation in PROF
µC0,C1 : P1(C0, C1) Q1(C0, C1) (natural in C0, C1)

νC1,C2 : P2(C1, C2) Q2(C1, C2) (natural in C1, C2)

λC0,C1,C2 : Q1(C0, C1) × Q2(C1, C2) R(C0, C2)
(

natural in C0, C2
and dinatural in C1

)
P1(C0, C1) × P2(C1, C2)

µ×ν

Q1(C0, C1) × Q2(C1, C2)
λ
R(C0, C2)

(
natural in C0, C2

and dinatural in C1

)
Predicate Logic – the interpretation in Rel

φ1(x0, x1) ⇒ ψ1(x0, x1) (∀x0, ∀x1)

φ2(x1, x2) ⇒ ψ2(x1, x2) (∀x1, ∀x2)

ψ1(x0, x1), ψ2(x1, x2) ⇒ χ(x0, x2) (∀x0, ∀x1, ∀x2)
φ1(x0, x1), φ2(x1, x2) ⇒ χ(x0, x2) (∀x0, ∀x1, ∀x2)

modus ponens

Table 1. An example of interpretation of prosubstitution

The feature of FVDblTT compared with VETT is protype isomorphisms. They model up-to-isomorphism
reasoning that is ubiquitous in category theory. One often proves two things are isomorphic by constructing some
pieces of mutual inverses and then combining them to form the intended isomorphism. We bring this custom
into the type theory as protype isomorphisms, which are interpreted as isomorphisms between profunctors,
i.e., an invertible natural transformation between profunctors. Moreover, they capture isomorphisms between
functors as well since isomorphisms between functors F, G : C D correspond to natural isomorphisms between
D(F−, •), D(G−, •) : C D according to the Yoneda lemma.

A byproduct of providing the internal language of fibrational virtual double categories is its aspect as an
all-encompassing language for predicate logic. The double category of sets, functions, relations as objects, tight

2The difference between virtual equipments and fibrational virtual double categories lies in that the former requires every object
to have a unit while the latter does not.

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 3

arrows, and loose arrows would also serve as the stage of semantics of FVDblTT. In this approach, protypes
symbolize relations (two-sided propositions) but with a direction, and proterms symbolize Horn formulas, as
exemplified in Table 1. In other words, category theory based on categories, functors, and profunctors can be
perceived as generalized logic. The unity of category theory and logic dates back to the work of Lawvere [Law73],
in which he proposed that the theories of categories or metric spaces are generalized logic, with the truth value
sets being some closed monoidal categories. How we interpret the type theory in these different virtual double
categories is summarized in Table 2. The last two rows of the table show some of the additional constructors
for FVDblTT, which we will discuss in Section 4.

Items in FVDblTT Formal category theory Predicate logic
Types I categories C sets A

Terms x : I ⊢ s : J functors T : C D functions f : A B
Protypes ¸(x # y) profunctors P : C D formulas φ(x, y) (x ∈ A, y ∈ B)

Proterms
a : ¸(x # y) # b : ˛(y # z)

⊢ — : ‚(x # z)

natural transformations
µx,y,z : P (x, y) ×Q(y, z) S(x, z)

Horn sequences (and its proofs)
φ(x, y), ψ(y, z) ⇒ χ(x, z)

Protype Isomorphisms
ˇ : ¸ ∼≡ ˛

natural isomorphisms
ιx,y : P (x, y) ∼= Q(x, y)

equivalence of formulas
φ(x, y) ≡ ψ(x, y)

Product types
I × J

product categories
C × D

product sets
A×B

Product protypes
¸ ∧ ˛

product profunctors
P (x, y) ×Q(x, y)

conjunctions
φ(x, y) ∧ ψ(x, y)

Substitution in terms
t(s1, . . . , sn)

composition of functors
T ◦ ⟨S1, . . . , Sn⟩

composition of functions
f ◦ ⟨s1, . . . , sn⟩

Substitution in protypes
¸(s # t)

restriction of profunctors
P (S(x), T (y))

instantiated formulas
φ(s(x), t(y))

Substitution in proterms
—(s0 # s1 # s2)

instantiated natural transformations
µS0(x′),S1(y′),S2(z′)

instantiated Horn sequences
φ(s0(x′), s1(y′)), ψ(s1(y′), s2(z′))

⇒ χ(s0(x′), s2(z′))
path protype↛ hom profunctor C(−,−) equality relation =A

composition protype ⊙ composition of profunctors by coend composition of relations by ∃

Table 2. Interpretation of FVDblTT in PROF and Rel

The paramount principle of categorical logic is the syntax-semantics duality [Uem23]. The main contribution
of this paper is to establish the duality of the type theory FVDblTT and virtual double categories. Stating
that a type theory is an internal language for a categorical structure should always be accompanied by a precise
statement that there is a biadjunction between the 2-category of the specifications (or theories) of the type
theory and the 2-category of the categorical structures. We present the biadjunction in our setting in Section5,
one between the 2-category consisting of specifications for this type theory and that of fibrational virtual double
categories, and show the soundness and completeness of the type theory for the virtual double categories. In
the proof, we pay special care to protype isomorphisms, whose behavior is peculiar to FVDblTT, by bridging
the two 2-categories with another 2-category.

1.1. Formal category theory Formal category theory aims to provide an adequate framework in which we
can develop category theory itself. One benefit to doing so is that one can argue, in parallel, multiple category
theories, including enriched category theory [Kel05], internal category theory [Joh02], and enriched indexed
category theory [Shu13]. Therefore, results in formal theory reduce to individual category theories, and one can
focus on particularities therein, just as category theory offers abstract perspectives to individual mathematics.
A comprehensive exposition of formal category theory is given in [LHLL17].

The earliest attempt was to perform category theory in an arbitrary 2-category by pretending that it is a
2-category of categories [Gra74]. However, more than mere 2-categories are needed to capture the big picture
of category theory. The core difficulty is that this approach does not embody the notion of presheaves, or
“set-valued functors” inside a 2-category. Subsequently, many solutions have emerged to address this problem,
such as Yoneda structures [SW78] and proarrow equipments [Woo82, Woo85]. An expedient approach uses
double categories, virtual double categories, or augmented virtual double categories [Shu08, Kou20]. The idea
is to encapsulate functors and profunctors in a single setting in order to express categorical concepts in terms
of internal behaviors of virtual double categories. General theories in (augmented) virtual double categories
have recently been developed, the successful examples of which are the Yoneda structures and total categories

4 HAYATO NASU

in augmented virtual double categories by Koudenburg [Kou20, Kou24] and the theory of relative monads in
virtual equipments by Arkor and McDermott [AM24]. In this paper, we cherish the philosophy of formal
category theory and provide a type theory for it, respecting categorical behaviors of fibrational virtual double
categories.

1.2. Outline Section 2 summarizes the terminology and notation used in this paper. Section 3 introduces the
syntax and the equational theory of FVDblTT and its semantics in virtual double categories. Section4 explains
the type theory’s possible extensions with additional constructors and how they work in the semantics with
examples. In Section 5, we present the main result of this paper, the biadjunction between the 2-category
of virtual double categories and the 2-category of FVDblTT specifications. This result directly implies the
soundness and completeness of the type theory.

1.3. Acknowledgements The author would like to thank his supervisor, Masahito Hasegawa, for his guidance
and encouragement. He also thanks Yuki Maehara for his helpful advice on the manuscript, in particular, on
the protype isomorphisms. He is also grateful to Keisuke Hoshino, Hiroyuki Miyoshi, Yuta Yamamoto for their
comments on the manuscript.

2. Preliminaries on Virtual Double Categories

In this section, we briefly recall the definition of a virtual double category and introduce the notion of a cartesian
fibrational virtual double category. It is this notion that we will construct the internal logic of.

First, we recall the definition of a virtual double category. The definitions are based on the paper [CS10].

Definition 2.1 ([CS10, Definition 2.1]). A virtual double category (VDC) D is a structure consisting of the
following data.
• A category Dt. Its objects are simply called objects, and its arrows are called tight arrows, which are

depicted vertically in this paper.
• A class of loose arrows D(I, J)0 for each pair of objects I, J ∈ Dt. These arrows are depicted horizontally

with slashes as α : I J .
• A class of (virtual) cells

I0 I1 · · · In

J0 J1

s

α1

µ

αn

t

β

(2.1)

for each dataset consisting of n ≥ 0, objects I0, . . . , In, J0, J1 ∈ Dt, tight arrows s : I0 J0 and t : In J1,
and loose arrows α1, . . . , αn, β. We will write the finite sequence of loose arrows as α = α1; . . . ; αn. When s
and t are identities, we call the cell a globular cell and let µ : α ⇒ β denote the cell. The class of globular
cells α ⇒ β would be denoted by D(I)(α, β) in which I = I0; . . . ; In.

• A composition operation on cells that assigns to each dataset of cells

I0,0 I1,0 I2,0 · · · In,mn

J0 J1 J2 · · · Jn

K0 K1

s0

α1

µ1 s1

α2

µ2 s2

αn

µn sn

t0

β1

ν

β2 βn

t1

γ

a cell
I0,0 I1,0 I2,0 · · · In,mn

J0 Jn

K0 K1

s0

α1

ν{µ1; . . . ; µn}

α2 αn

sn

t0 t1

γ

,

where the dashed line represents finite sequences of loose arrows, for which associativity axioms hold. We
will write the finite sequence of cells as µ = µ1; . . . ; µn.

• An identity cell for each loose arrow α : I J

I J

I J

idI

α

idα idJ

α

,

for which identity laws axioms hold. (Henceforth, we will just write = for the identity tight arrows.)
■

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 5

We say two object I, J in a virtual double category are isomorphic if they are isomorphic in the underlying
tight category Dt, and write I ∼= J . For any objects I, J in a virtual double category, we write D(I, J) for
the category whose objects are loose arrows α : I J and whose arrows are cells µ : α ⇒ β. A cell is called
an isomorphism cell if it is invertible in this category. More generally, we say two loose arrows α, β are
isomorphic if there exist two cells

I J

K L

s

α

µ t

β

and
K L

I J
s′

β

ν t′

α

such that µ{ν} = idβ and ν{µ} = idα, and call the cells µ and ν isomorphism cells. It is always the case
that I ∼= K and J ∼= L through the tight arrows s, t, s′, t′.

Example 2.2. A double category is a virtual double category where every sequence of loose arrows is compos-
able. In this case, a cell (2.1) is a cell whose top loose arrow is the composite of the loose arrows α1, . . . , αn.

Definition 2.3 ([CS10, Definition 3.1]). A virtual double functor F : D E between virtual double cate-
gories D and E consists of the following data and conditions:
• A functor Ft : Dt Et.
• A family of functions F1 : D(I, J)0 E(Ft(I), Ft(J))0 for each pair of objects I, J of D.
• A family of functions sending each cell µ of D on the left below to a cell F1(µ) of E on the right below:

I0 I1 · · · In

J0 J1

s0

α1

µ

αn

s1

β

7→
Ft(I0) Ft(I1) · · · Ft(In)

Ft(J0) Ft(J1)
Ft(s0)

F1(α1)

F1(µ)

F1(αn)

Ft(s1)

F1(β)

. (2.2)

• The identity cells are preserved.
• Composition of cells is preserved.

As usual, we will often omit the subscripts of the functor and functions Ft and F1.
A vertical transformation θ : F G between virtual double functors F, G : D E consists of the following

data and conditions:
• A natural transformation θ0 : Ft Gt.
• A cell θ1,α for each loose arrow α : I J of D:

FI FJ

GI GJ

θ0,I

Fα

θ1,α θ0,J

Gα

• The naturality condition for cells:

FI0 FIn

FJ0 FJ1

GJ0 GJ1

Fs0

Fα

Fµ Fsn

θJ0
Fβ

θβ
θJ1

Gβ

=

FI0 FIn

GI0 GIn

GJ0 GJ1

θI0

Fα

θα θIn

Gs0
Gα

Gµ Gsn

Gβ

.

VDbl is the 2-category of virtual double categories, virtual double functors, and vertical transformations. ■

Definition 2.4 ([CS10, Definition 7.1]). Let D be a virtual double category. A restriction of a loose arrow
α : I J along a pair of tight arrows s : I ′ I and t : J ′ J is the loose arrow α[s # t] : I ′ J ′ equipped
with a cell

I ′ J ′

I J

s

α[s # t]

rest t

α

with the following universal property: any cell µ of the form on the left below factors uniquely through the cell
rest as on the right below.

K L

I ′ J ′

I J

u

β

µ
v

s t

α

=

K L

I ′ J ′

I J

u

β

µ̂ v

s
α[s # t]
rest t

α

If the restrictions exist for all triples (α, s, t), then we say that D is a fibrational virtual double category
(FVDC).

6 HAYATO NASU

A fibrational virtual double functor F : D E between fibrational virtual double categories D and E
is a virtual double functor that preserves restrictions. FibVDbl is the 2-category of fibrational virtual double
categories, fibrational virtual double functors, and vertical transformations. ■

Lemma 2.5. A virtual double functor F : D E is an equivalence in VDbl if and only if
(i) the functor Ft : Dt Et for F is an equivalence of categories,
(ii) for any loose arrow α : I J in E, there exists a loose arrow β : I ′ J ′ in D and an isomorphism cell µ

as below:
FI ′ FJ ′

I J

∼ =

Fβ

µ ∼ = ∼ =

α

, and

(iii) for any quadruple (s, t, α, β), the function F on the cells (2.2) is a bijection.
A fibrational virtual double functor F : D E is an equivalence in FibVDbl if and only if (i), (ii), and the
special case of (iii) where s and t are identities are satisfied.

Proof. If we are given an inverse G of F , then Gt is the inverse of Ft, and the isomorphism FG ⇒ Id gives the
isomorphism cells µ above. The inverse of functions F in (2.2) is given by sending a cell ν on the right to G1(ν)
and composing with the isomorphism cells obtained from the isomorphism GF ⇒ Id.

Conversely, given the conditions, we can construct an inverse G of F . The vertical part of G is given by an
inverse of Ft. Then, for each loose arrow α : I J in E, we can show that a loose arrow β : GI GJ in D is
isomorphic to α by the second condition. The bijection in (iii) determines how to send a cell in E to a cell in
D. The functoriality of G follows from the one-to-one correspondence between cells in D and E in (iii).

For the fibrational case, we only need to check that (iii), in general, follows from the cases where s and t
are identities. However, it is straightforward by the universal property of the restrictions. It follows that the
inverse is fibrational from the fact that any equivalence preserves restrictions. □

Next, we introduce the notion of a cartesian fibrational virtual double category.

Definition 2.6. A cartesian object in a 2-category B with finite products 1, ⊗ is an object x of B such that
the canonical 1-cells ! : x 1 and ∆ : x x ⊗ x have right adjoints 1: 1 x and × : x ⊗ x x, respectively. A
cartesian 1-cell (or cartesian arrow) in B is a 1-cell f : x y between cartesian objects x and y of B such
that the canonical 2-cells obtained by the mate construction × ◦ (f ⊗ f) ⇒ f ◦ × and f ◦ 1 ⇒ 1 are invertible.

For a 2-category B with finite products, we write Bcart for the 2-category of cartesian objects, cartesian
1-cells, and arbitrary 2-cells in B. ■

Lemma 2.7. Let B be a 2-category with finite products. A 1-cell f : x y in Bcart is an equivalence in Bcart
if and only if the underlying 1-cell of f is an equivalence in B.

Proof. The only if part is clear since we have the forgetful 2-functor Bcart B. For the if part, take the right
adjoint g of the underlying 1-cell of f as its inverse. Taking the right adjoint of both sides of the isomorphism
2-cells ! ◦ f ∼=! and (f ⊗ f) ◦ ∆ ∼= ∆ ∼= f , we obtain the isomorphism 2-cells 1 # g ∼= 1 and × ◦ (g ⊗ g) ∼= g ◦ ×.
This shows that g gives a cartesian morphism from y to x, and g is indeed the inverse of f in Bcart. □

Proposition 2.8. An FVDC D is cartesian if and only if the following conditions are satisfied:
(i) Dt has finite products;
(ii) D locally has finite products, that is, for each I, J ∈ Dt,

(a) for any loose arrows α, β : I J in D, there exists a loose arrow α∧β : I J and cells π0 : α∧β ⇒ α,
π1 : α ∧ β ⇒ β such that for any finite sequence of loose arrows γ where γi : Ii−1 Ii for 1 ≤ i ≤ n
where I0 = I and In = J , the function

D(I)(γ, α ∧ β) D(I)(γ, α) ×D(I)(γ, β) ; µ 7→ (π0 ◦ µ, π1 ◦ µ)

is a bijection, and
(b) there exists a loose arrow ⊤ : I J such that D(I)(γ, ⊤)0 is a singleton for any finite sequence of

loose arrows γ;
(iii) the local finite products are preserved by restrictions.
A morphism between cartesian FVDCs is a cartesian morphism if and only if the underlying tight functor
preserves finite products and the morphism preserves local finite products.

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 7

Proof sketch. The proof is similar to that of [Ale18, Prop 4.12]. First, suppose that D is cartesian. Let
∆I : I I × I be the diagonal of I and !I : I 1 be the unique arrow to the terminal object. If D is cartesian,
then α ∧ β and ⊤ in D(I, J) are given by (α × β)[∆I # ∆J] and Id1(!I , !J), which brings the finite products
in D(I, J). The local finite products are preserved by restrictions since, by the universal property of the
restrictions, we have

(α × β)[∆I # ∆J][s # t] ∼= (α × β)[(s × s) # (t × t)][∆I′ # ∆J′] ∼= (α[s # t] × β[s # t])[∆I′ # ∆J′],
and similarly for ⊤. Conversely, if D locally has finite products, then assigning

α × β := α[πI # πJ] ∧ β[πK # πL] : I × K J × L

to each pair α : I J, β : K L and a cell µ × ν naturally obtained from the universal property of the
restrictions induces the functor × : D×D D right adjoint to the diagonal functor, and the functor 1: 1 D

obtained by the terminal object inDt is the right adjoint of !. The second statement follows from the construction
of the equivalence above. □

Remark 2.9. The third condition in Proposition 2.8 is necessary for FVDC but not for equipments as in
[Ale18] since the latter has extensions.

Example 2.10. One of the motivations for our type theory is to formalize category theory in formal language.
The following examples of virtual double categories will provide a multitude of category theories that can be
formalized in our type theory.
(i) The double category Prof consists of small categories, functors, and profunctors as objects, tight arrows,

and loose arrows, respectively. When we consider not necessarily small categories, however, we do not have
a composition of profunctors in general. Nevertheless, we can still define a virtual double category PROF
of categories, functors, and profunctors. It is a cartesian fibrational virtual double category (CFVDC).

(ii) Similarly, we can define CFVDCs V-Prof and V-PROF of V-enriched categories, functors, and profunctors,
where V is a symmetric monoidal category.

(iii) We can also define virtual double categories Prof(S) of internal categories, functors, and profunctors in
categories S with finite limits.

Example 2.11. Predicate logic deals with functions and relations between sets. We can see these two as tight
and loose arrows, respectively, although we limit ourselves to the case where relations are binary.
(i) We have a double category called Rel consisting of sets, functions, and relations [Lam22], where there is

at most one cell for each frame and a cell (2.1) exists whenever
α1(x0, x1) ∧ · · · ∧ αn(xn−1, xn) ⇒ β(s0(x0), s1(xn)) (∀xi ∈ Ii, 0 ≤ i ≤ n).

This can be generalized to a regular category and further to a category with finite limits equipped with a
stable factorization system as in [HN23].

(ii) Given a category S with finite limits, a span in S is a pair of arrows f : Z X and g : Z Y . We can
define a double category called Span(S) consisting of objects, arrows, and spans in S [Ale18]. It can be
seen as a proof-relevant version of Rel.

3. Fibrational Virtual Double Type Theory

This section will present a type theory that serves as an internal language for a CFVDC, which we call
fibrational virtual double type theory (FVDblTT). We will first introduce the type theory FVDblTT in
Subsection 3.1. Then, we will present how to interpret the type theory in a CFVDC in Subsection 3.2.

3.1. Syntax In this subsection, we will present the syntax and equational theory of FVDblTT and explain
some advantages of the type theory.

Typing Judgments
Type I type

Context ` ctx
Term ` ⊢ s : I

Term Substitution ` ⊢ S /´

Protype ` # ´ ⊢ ¸ protype

Procontext `0 # . . . # `n | A proctx

Proterm `0 # . . . # `n | A ⊢ — : ˛

Equality Judgments
Term ` ⊢ s ≡ t : I

Protype ` # ´ ⊢ ¸ ≡ ˛

Proterm `0 # . . . # `n | A ⊢ — ≡

Isomorphism Judgments
Protype ` # ´ ⊢ ˇ : ¸ ∼≡ ˛

Figure 3. The three kinds of judgments in FVDblTT

8 HAYATO NASU

Three kinds of judgments. In FVDblTT, judgments are divided into three kinds, as in Figure 3. The first
kind of judgments is the typing judgments for all the syntactic entities in the type theory, which regulates
the well-formedness of the entities. Types, contexts, terms, and term substitutions are the same as those in
the ordinary algebraic theory as in [Cro94, Jac99]. This fragment of the type theory serves as the theory of
categories and functors. As usual, substitution of terms for variables in terms is defined by induction on the
structure of terms.

Protypes and proterms are particular to this type theory and encode the loose arrows and cells in an FVDC.
The prefix pro- stands for “pro”positions and “pro”functors. A protype ¸ depends on two contexts, ` and ´,
which will be interpreted as the source and the target of a loose arrow representing the protype. We call the
pair (` ,´) the two-sided context of the protype. In the type theory, we distinguish semicolons # from the
ordinary concatenating symbol commas , by restricting using the former to concatenate items in the horizontal
direction in a diagram in a VDC. Since the source and the target of a loose arrow can not be exchanged in any
sense in a general VDC, we need to respect the order when we use the semicolons. Accordingly, a procontext
¸1 # . . . # ¸n, which is a finite sequence of protypes, is only well-typed so that the second (target) context of a
protype is the first (source) context of the subsequent protype, and hence a procontext depends on a sequence of
contexts. As a particular case, we have the empty procontext · depending on a single context ` . Another item
is proterms A ⊢ — : ˛, which are to be interpreted as globular cells in a VDC whose domains and codomains
are the interpretation of A and ˛, respectively.

The second kind of judgments is the equality judgments for terms and proterms. We incorporate the ordinary
algebraic theory of terms with the equality judgments for terms, and we also have the equality judgments for
proterms to capture the equality of cells in a VDC. The rules for equality judgments, or the equational theory
of the type theory, are based on the usual axioms of reflexivity, symmetry, transitivity, and congruence. The
rules for equality judgments of terms are standard, and the rules for those of protyopes are given so that the
type theory is sound and complete for the CFVDCs. The details of the rules will be given in Appendix B.1.

Type
I type J type

I × J type
×

1 type
1

Context

· ctx
EmpCtx

` ctx I type
` , x : I ctx

ConsCtx

Term

` , x : I,´ ⊢ x : I
Var

I type J type ` ⊢ s : I ` ⊢ t : J
` ⊢ ⟨s, t⟩ : I × J

I-×

` ⊢ t : I × J

` ⊢ pr0(t) : I
E-×-l

` ⊢ t : I × J

` ⊢ pr1(t) : J
E-×-r

` ⊢ ⟨ ⟩ : 1
I-1

Term Substitution
` · ⊢ /·

EmpSubs

` ⊢ S /´ ` ⊢ s : I
` ⊢ S, s /´, x : I

ConsSubs

Protype
` # ´ ⊢ ¸ protype ` # ´ ⊢ ˛ protype

` # ´ ⊢ ¸ ∧ ˛ protype
ProProd

` # ´ ⊢ ⊤ protype
ProTer

`
′ ⊢ S / ` ´

′ ⊢ T /´ ` # ´ | ¸ protype
`

′ # ´′ ⊢ ¸[S/` # T/´] protype
ProtpRes

Procontext
` | · proctx

EmpProctx

`0 # . . . # `n | A proctx `n # ´ ⊢ ¸ protype
`0 # . . . # `n # ´ | A, a : ¸ proctx

ConsPro

Proterm
` # ´ ⊢ ¸ protype
` # ´ | a : ¸ ⊢ a : ¸

Provar
` # ´ ⊢ ˇ : ¸ ∼≡ ˛

` # ´ | a : ¸ ⊢ trˇ (a) : ˛
Transport

`i | ai,1 : ¸i,1 # . . . # ai,ni
: ¸i,ni

⊢ —i : ˛i (i = 1, . . . ,m) ˜̀ | b1 : ˛1 # . . . # bn : ˛n ⊢ : ‚

` | a1,1 : ¸1,1 # . . . # am,nm : ¸m,nm ⊢ {—1/b1 : ˛1 # . . . # —m/bm : ˛m} : ‚
Prosubstitute

` | A ⊢ — : ¸ ` | A ⊢ : ˛

` | A ⊢ ⟨—, ⟩ : ¸ ∧ ˛
I-∧ ` # ´ ⊢ ¸ protype ` # ´ | ˛ protype

` # ´ | a : ¸ ∧ ˛ ⊢ ı0 : ¸
E-∧-l

` # ´ ⊢ ¸ protype ` # ´ | ˛ protype
` # ´ | a : ¸ ∧ ˛ ⊢ ı1 : ˛

E-∧-r
` | A ⊢ ⟨ ⟩ : ⊤

I-⊤

`i ⊢ Si /´i (i = 0, . . . , n) ´0 # . . . # ´n | a1 : ¸1 # . . . # an : ¸n ⊢ — : ˛
`1 # . . . # `n | c1 : ¸1[S0/´0 # S1/´1] # . . . # cn : ¸n[Sn−1/´n−1 # Sn/´n]

⊢ —[S0/´0 # . . . # Sn/´n] : ˛[S0/´0 # Sn/´n]

ProtmRest

Figure 4. The rules for typing judgments

Protype isomorphisms. The third kind of judgments is what we call isomorphism judgments for protypes,
which are the central component of this type theory. They are understood half as the typing judgments for
protype isomorphisms and half as the equality judgments for protypes up to isomorphism. Protype isomorphisms
are considered as codes for the two proterms mutually inverse to each other so that proterms can track what they
actually represent in the type theory. On the other hand, they allow us to reason about the equality of protypes

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 9

up to isomorphism handily. In category theory, one often proves that two objects, functors, or profunctors are
isomorphic by exhibiting a sequence of those isomorphisms between them that one has already constructed or
known to exist. With protype isomorphisms, we can do the same in the type theory without showing proterms
in both directions explicitly every time but still keeping track of the proterms that represent the isomorphisms.
We do not have equality judgments for protype isomorphisms since one can identify or distinguish them by the
proterms they represent using the equality judgments for proterms.

The rules for isomorphism judgments for protypes are given in Appendix B.1. They are divided into three
kinds. The first kind is for the groupoid structure of protypes, for instance, the introduction rule of the inverse of
a protype isomorphism. Next, the second kind is for compatibility conditions of restriction and other operations
that must be satisfied in a CFVDC, such as the introduction rule of the isomorphism between ⊤ and ⊤ after
substitution. Finally, the third kind constructs protype isomorphisms from pairs of mutually inverse proterms.

The transformation of protype isomorphisms into proterms is achieved by the conversion rule. The resulting
proterms are written as trˇ (a) formally, but we will often write them as ˇ{a} by abuse of notation. Correspond-
ing to some of the rules for protype isomorphisms, such as inverses and composition of protype isomorphisms,
we have rules for proterm equalities that guarantee that the protype isomorphisms are those that are expected
to be.
Fibrationality and cartesianness. We restrict our interest to fibrational virtual double categories and an
internal language for them. This is because the fibrationality condition enables us to describe the data of cells
in a VDC more conveniently. A cell in a VDC comes equipped with two tight arrows, one finite sequence of
loose arrows, and another loose arrow, which is unwieldy to bring into the syntax of the type theory. Owing
to the fibrationality condition, under which every cell corresponds to a globular cell in a VDC, judgments for
proterms achieve a linear presentation of the data of cells in a VDC.

While the fibrationality facilitates the presentation of the type theory, it does not confine what we are trying
to model with it. Rather, it reflects what people are genuinely interested in when they work with the VDCs
of profunctors and relations. The fibrationality condition indicates the possibility of substituting terms (tight
arrows) for a variable in loose arrows, which is fundamental to both the VDCs of profunctors and relations.
For a profunctor Q : A B and two functors, F : C A and G : D B, the instantiated profunctor Q(F, G)
is defined as Q(F, G)(C, D) = Q(F (C), G(D)). A cell of the form on the left below in the VDC PROF of
profunctors is a family of functions on the right below that is natural in C and D and dinatural in E, which
shows the primacy of instantiated profunctors in PROF.

C E D

A B
F

P1

µ

P2

G

Q

↭ P1(C, E) × P2(E, D) µC,E,D
Q(F (C), G(D))

The substitution in relations is similarly a common practice in predicate logic. To sum up, the fibrationality
condition is a natural condition for VDCs of these kinds and should be worth considering whatever category
theory or predicate logic we are working with.

The cartesianness assumption is natural for dealing with tuples of terms or proterms in the type theory. The
type theory has the product type I × J and the protype ¸ ∧ ˛, interpreted as the product of two objects and
the local product of two loose arrows in a VDC. When we establish our type theory on the bedrock of the
2-category of CFVDCs, one benefit of assuming cartesianness is that cartesianness in 2-categories is not just a
structure but a property-like one, which makes it easier to legitimate the rules on compatibility with additional
constructors as we will introduce in Appendix B.1. It might be preferable to have an internal language for
FVDCs that is not necessarily cartesian but with a monoidal structure and its type-theoretic counterpart,
which does not seem to be a difficult task to achieve but is beyond the scope of this paper.
Explicit substitution. Substitution is vital to type theory. In FVDblTT, we have two kinds of variables:
ones for terms into variables and ones for proterms into provariables. For the term substitution, we have a term
t[S/`], a protype ¸[S/` # T/´], and a proterm —[S0/`0 # . . . # Sn/`n]. For the proterm substitution, we have
a instantiated proterm —{—1/b1 : ˛1, . . . ,—n/bn : ˛n}.

The prevailing approach to substitution in type theory is to define it inductively concerning the structure of
terms. In FVDblTT, however, we adopt an alternative approach called explicit substitution, as in [ACCL91].
Explicit substitution is a method of introducing substitution as a syntactic construct, and it is often used when
they encounter the problem that the syntactic equality is too strict for the intended semantics. For instance,
Curien’s work uses explicit substitution to resolve the problem of the semantics of dependent type theory in
locally cartesian closed categories [Cur93]. While the usual substitution is defined in the meta-theory, explicit
substitution enables us to define it in the syntax of the type theory.

We adopt explicit substitution for protypes and proterms in order to accommodate the difference between
two isomorphic protypes that are not strictly equal. The meta-theoretic substitution would ignore the difference
between a term with a substitution and the result of the substitution, unintendedly forcing us to interpret the
two isomorphic protypes, say ¸[S/` ,T/´][S′/` ′,T ′/´′] and ¸ [S[S′/`] # T [T ′/´]/´], as the same. On the

10 HAYATO NASU

other hand, in a FVDC, restrictions are not even chosen but are just given by universal properties. Therefore,
the two protypes above, for instance, should be distinguished in the type theory but interpreted as canonically
isomorphic loose arrows in a VDC, for which we add a protype isomorphism between these two protypes. This
is the reason why we adopt explicit substitution in FVDblTT.

3.2. Semantics As previously mentioned, the semantics of FVDblTT are to be given in a CFVDC. The
elements in the type theory are to be interpreted as the following elements in a VDC.
• I type is to be interpreted as an object JIK of D.
• ` ctx is to be interpreted as the product of the objects J` K =

∏
iJIiK in D where ` = I0, . . . , In−1.

• ` ⊢ t : I is to be interpreted as a tight arrow JtK : J` K JIK in D.
• ` ⊢ S /´ is to be interpreted as a tight arrow JSK : J` K J´K in D.
• ` # ´ ⊢ ¸ protype is to be interpreted as a loose arrow J¸K : J` K J´K in D.
• `0 # . . . # `n | a1 : ¸1 # . . . # an : ¸n proctx is to be interpreted as a path of loose arrows

J`0K
J¸1K

J`1K . . .
J¸nK

J`nK in D.

• ` | a1 : ¸1 # . . . # an : ¸n ⊢ — : ˛ is to be interpreted as a cell

J`0K · · · · · · J`nK

J`0K J`nK

J¸1K

J—K

J¸nK

J˛K

in D.

• ` # ´ ⊢ ˇ : ¸ ∼≡ ˛ is to be interpreted as an isomorphism between loose arrows Jˇ K : J¸K ⇒ J˛K : J` K J´K
in D.

Let us turn to the inductive definition of the interpretation of the terms and protypes in a CFVDC.

Definition 3.1. The interpretation of the terms, protypes, protype isomorphisms, and proterms in a CFVDC
D is defined inductively as follows:
• Product types ×, 1 are interpreted as the product and terminal object ofD, respectively. Pairing, projections,

and the unit are interpreted in an obvious way.
• Product protypes ∧, ⊤ in context ` # ´ are interpreted as the product and terminal loose arrow from J` K

to J´K, respectively. Pairing, projections, and the unit are interpreted in an obvious way.
• The interpretation of the term t[S/´] is the composite of the tight arrow JtK : J´K JIK with JSK :

J` K J´K.
• The interpretation of the protype ¸[S/` # T/´] is the restriction of the loose arrow J¸K : J` K J´K along

the tight arrow JSK : J` ′K J` K and JT K : J´′K J´K.

J` ′K J´′K

J` K J´K

J¸[S/` # T/´]K

JSK rest JT K

J¸K

• The interpretations of the protype isomorphisms id¸,ˇ−1,ˇ ◦ ˙ are the identity cell on J¸K, the inverse of
the cell Jˇ K, and the composite of the cells J˙K and Jˇ K, respectively.

• The interpretations of the protype isomorphisms rest-iter, rest-ide, repl are all canonical cells determined by
the universal properties of restriction.

• The interpretations of the protype isomorphisms rest∧, rest⊤ are the canonical cells determined by the uni-
versal properties of the restriction, the universal properties of restriction, and finite products of loose arrows.
Note that the interpretation surely defines isomorphism cells by Lemma 2.7.

• The interpretation of the protype isomorphism L—, M is the cell J—K.
• The interpretation of term substitution in proterms obtained by the following rule

`i ⊢ Si /´i (i = 0, . . . , n) ´0 # . . . # ´n | a1 : ¸1 # . . . # an : ¸n ⊢ — : ˛
`1 # . . . # `n | c1 : ¸1[S0/´0 # S1/´1] # . . . # cn : ¸n[Sn−1/´n−1 # Sn/´n]

⊢ —[S0/´0 # . . . # Sn/´n] : ˛[S0/´0 # Sn/´n]

is the unique cell J—[S0/´0 # . . . # Sn/´n]K that makes the following composites equal.

J`0K J`1K J`n−1K J`nK

J´0K J´1K J´n−1K J´nK

J´0K J´nK

J¸1[S0/´0 #S1/´1]K

JS0K rest
· · ·

JS1K · · ·

J¸n[Sn−1/´n−1 #Sn/´n]K

restJSn−1K JSnK

J¸1K
J—K

· · ·
J¸nK

J˛K

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 11

J`0K J`1K J`n−1K J`nK

J`0K J`nK

J´0K J´nK

J¸1[S0/´0 #S1/´1]K

J—[S0/´0 # . . . # Sn/´n]K
· · · J¸n[Sn−1/´n−1 #Sn/´n]K

J˛[S0/´0 #Sn/´n]K
JS0K rest JSnK

J˛K

• The interpretation of the prosubstitution in proterms obtained by the following rule
`i | ai,1 : ¸i,1 # . . . # ai,ni : ¸i,ni ⊢ —i : ˛i (i = 1, . . . ,m) ˜̀ | b1 : ˛1 # . . . # bn : ˛n ⊢ : ‚

` | a1,1 : ¸1,1 # . . . # am,nm : ¸m,nm ⊢ {—1/b : ˛1 # . . . # —m/bm : ˛m} : ‚

is the following composite of cells.

J`0,0K · · · J`1,0K · · · J`m,0K · · · J`m,nmK

J`0,0K J`1,0K · · · J`m,0K J`m,nm
K

J`0,0K J`m,nm
K

J¸1,1K

J—1K

J¸1,n1 K J¸m,1K

J—mK

J¸m,nm K

J˛1K
JK

J˛mK

J‚K

.

• The interpretation of the proterm a : ¸ ⊢ trˇ (a) is the globular isomorphism cell Jˇ K : J¸K ⇒ J˛K itself.
■

Taking semantics in VDCs listed in Examples2.10 and 2.11 justifies how FVDblTT expresses formal category
theory and predicate logic in Table 2.

4. Protype and type constructors for FVDblTT

4.1. Common structures in VDCs and the corresponding constructors In this section, we will specify
the type and protype constructors that can be added to FVDblTT. The virtual double categories of relations
and those of profunctors have many structures in common. We would like to introduce the inductive types and
protypes corresponding to the common structures in these kinds of virtual double categories. We first list the
additional types will introduce for the type theory.

Structures Formal category theory Predicate logic Constructors
in FVDblTT

Units [CS10] hom-profuntors C(−, •) equality = path ↛
Composition [CS10] composition via coends

´
composition via ∃ composition ⊙

Extension [RV22] profunctor extension ▷ contraction via ∀ extension ▷

Tabulators [GP99] two-sided
Grothendieck construction comprehension {-} tabulator {|-|}

Table 3. The common structures and the corresponding constructors

The constructors we will add to FVDblTT are ↛, ⊙, ▷, ◁, and {|-|}. Even though we can add the constructors
for the loose adjunctions and the companions and conjoints independently of the other constructors, we would
take the approach of defining them in terms of ↛ and ⊙ in this paper.
Path protype ↛ for the units. (Appendix B.3) The path protype is the protype that represents the units
in a VDC. In a double category, the units are just the identity loose morphisms, but in a VDC, the units are
formulated via a universal property. The definition of units is due to [CS10].
Definition 4.1 (Units [CS10, Definition 5.1]). A unit of an object I in a VDC is a loose arrow UI : I I
equipped with a cell ηI : · ⇒ UI with the following universal property. Given any cell ν on the left below where

α =
(

I0
α1 · · · αn I

)
and α′ =

(
I
α′

1 · · ·
α′

n′
I ′
n′

)
are arbitrary sequences of loose arrows, it uniquely factors

through the sequence of the identity cells with ηI as on the right below.

I0 I I ′
n′

J J ′

α

f ν

α′

f ′

β

=

I0 I I ′
n′

I0 I I I ′
n′

J J ′

α

= ηI

α′

=

α
f

ν̃

UI α′

f ′

β

■

12 HAYATO NASU

The formation rule for the path protype is on the left below, and it comes equipped with the introduction
rule on the right below:

I type
x : I # y : I ⊢ x↛I y protype .

I type
x : I | ⊢ reflI(x) : x↛I x

The proterm refl corresponds to the unit ηI in the definition of the units. To let the path protype encode the
units in the VDCs, we need to add elimination and computation rules as in Appendix B.3. The path protypes
behave as inductive (pro)types, and their inductions look very similar to path induction in homotopy type
theory, but with the difference that the path protype is directed.

The semantics of the path protypes ↛ are given by the units in any VDC with units, with the proterm
constructor reflI interpreted as the cell ηJIK. For instance, in the VDCs PROF and Rel, the interpretations of
the path protypes are given as the hom profunctors and the equality relations, respectively. These follow from
the fact that the identity loose morphisms in a double category serve as the units when we see it as a VDC.

In order to make the path protypes behave well with the product types in FVDblTT, we need to add the
compatibility rules between the path protypes and the product types as in Appendix B.3. For instance, when
we consider the hom-profunctor on a product category C ×D, we expect its components to be isomorphic to the
product C(C, C ′) × D(D, D′). Correspondingly, we would like to add the following rule, which does not follow
from other rules a priori:

I type J type
x : I, y : J # x′ : I, y ′ : J ⊢ exc↛,∧ : ⟨x, y⟩↛I×J ⟨x′

, y
′⟩ ∼≡ x↛I x

′ ∧ y↛J y
′
.

Appendix B.3 will give the whole set of rules for the compatibility between the path protypes and the product
types. The rules we introduce are justified by the fact that with them, the syntactic VDCs we will give in
Subsection 5.3 become cartesian objects in the 2-category of CFVDCs with units. See Proposition A.2 for a
detailed explanation from the 2-categorical perspective.
Composition protype ⊙ for the composites. (Appendix B.3) The composition protype is the protype
that represents the composition of paths of loose arrows just of length 2 in the virtual double categories. Here
we follow the definition of the composition of paths of loose arrows in [CS10].

Definition 4.2 (Composites [CS10, Definition 5.2]). A composite of a given sequence of loose arrows α =(
I0

α1 I1 · · · αm Im

)
in a virtual double category is a loose arrow ⊙α from I0 to Im equipped with a cell

I0 I1 · · · Im

I0 Im

α1

ϵα

αm

⊙α

with the following universal property. Given any cell ν on the left below where β, β
′ are arbitrary sequences of

loose arrows, it uniquely factors through the sequence of the identity cells with µα as on the right below.

J0 I0 Im J ′
n′

K K ′

β

f ν

α β
′

f ′

γ

=

J0 I0 Im J ′
n′

J0 I0 Im J ′
n′

K K ′

β

= ϵα

α β
′

=

β
f

ν̃

⊙α β
′

f ′

γ

■

The units are the special cases of the composition of paths of length 0, and the composition of paths longer
than 2 can be realized by the iterated use of the composition of paths of length 2. In order to gain access to
the composition of paths of positive length in the type theory, we introduce the composition protype ⊙ to
FVDblTT. The formation rule for the composition protype is the following:

w : I # x : J ⊢ ¸(w # x) protype x : J # y : K ⊢ ˛(x # y) protype
w : I # y : K ⊢ ¸(w # x) ⊙x:J ˛(x # y) protype

This comes equipped with the introduction rule:
w : I # x : J ⊢ ¸(w # x) protype x : J # y : K ⊢ ˛(x # y) protype

w : I # x : J # y : K | a : ¸(w # x) # b : ˛(x # y) ⊢ a⊙ b : ¸(w # x) ⊙x:J ˛(x # y)

For the detailed rules of the composition protype, see Appendix B.3. Plus, we need the compatibility rules for
the composition protype and the product types as we did for the path protype, see Appendix B.3.

If we load the path protype ↛ and the composite protype ⊙ to FVDblTT, procontexts can be equivalently
expressed by a single protype. In this sense, such a type theory can be seen as an internal language of double

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 13

categories. This is supported by the fact that a VDC is equivalent to one arising from a double category if and
only if it has composites of all paths of loose arrows, including units [CS10, Theorem 5.2].

The semantics of the composition protypes ⊙ is given by the composites in VDCs if they have ones of
sequences of length 2 in an appropriate way. For example, in the VDC Prof, the composite of paths of length
2 is the composite of profunctors, given by the coend

´
. In the VDC Rel, the composites of paths of length 2

are the composites of relations, given by the existential quantification ∃.

J¸(w # x) ⊙x:J ˛(x # y)K =
ˆ X∈JJK

J¸K(−, X) × J˛K(X, •) : JIK JKK in Prof

J¸(w # x) ⊙x:J ˛(x # y)K = { (w, y) | ∃x ∈ JJK.J¸K(w, x) ∧ J˛K(x, y) } : JIK JKK in Rel

Filler protype ▷, ◁ for the closed structure. (Appendix B.3) Having obtained the ability to express a
particular kind of coends in formal category theory, and existential quantification in predicate logic, we would
like to introduce the protypes for ends and universal quantification in the type theory. First of all, we recall
the definition of the right extension and the right lift [RV22, AM24] in a VDC, which are straightforward
generalizations of the right extension and the right lift in a bicategory.

Definition 4.3. A right extension of a loose arrow β : I K along a loose arrow α : I J is a loose arrow
α ▷ β : J K equipped with a cell

I J K

I K

α

ϖα,β

α▷β

β

with the following universal property. Given any cell ν on the left below where γ is an arbitrary sequence of
loose arrows, it uniquely factors through the cell ϖα,β as on the right below.

I J K

I K

α

ν

γ

β

=

I J K

I J K

I K

α

= ν̃

γ

α

ϖα,β

α▷β

β

A right lift of a protype β : I K along a protype α : J K is a protype β ◁ α : I J equipped with a
cell

I J K

I K

β◁α

ϖ′
α,β

α

β

with the following universal property. Given any cell ν on the left below where γ is an arbitrary sequence of
loose arrows, it uniquely factors through the cell ϖ′

α,β as on the right below.

I J K

I K

γ

ν

α

β

=

I J K

I J K

I K

γ

ν̃ =

α

β◁α

ϖ′
α,β

α

β

■

With this notion, one can handle the concept of weighted limits and colimits internally in virtual double
categories. We now introduce the filler protypes ▷ and ◁ to FVDblTT to express the right extension and the
right lift in the type theory. The formation rule for the right extension protype is the following:

w : I # x : J ⊢ ¸(w # x) protype w : I # y : K ⊢ ˛(w # y) protype
x : J # y : K ⊢ ¸(w # x) ▷w :I ˛(w # y) protype

The constructor for the right extension protype is given in the elimination rule since the orientation of the
universal property of the right extension is opposite to that of the composition protype and the path protype.

w : I # x : J ⊢ ¸(w # x) protype w : I # y : K ⊢ ˛(w # y) protype
w : I # x : J # y : K | a : ¸(w # x) # e : ¸(w # x) ▷w :I ˛(w # y) ⊢ a ▶ e : ˛(w # y)

The semantics of the right extension protype ▷ is given by the right extension in VDCs. The constructor ▶

is interpreted using the cell ϖJ¸K,J˛K above. To illustrate the semantics of the right extension protype, we give

14 HAYATO NASU

the interpretations of the right extension protype in the VDCs Prof and Rel.

J¸(w # x) ▷w :I ˛(w # y)K =
ˆ
W∈JIK

[J¸K(W, −), J˛K(W, •)] : JJK JKK in Prof

J¸(w # x) ▷w :I ˛(w # y)K = { (x, y) | ∀w ∈ JIK. (J¸K(w, x) ⇒ J˛K(w, y)) } : JJK JKK in Rel

Here, [X, Y] is the function set from X to Y .
Comprehension type {|-|} for the tabulators. (Appendix B.3) The last one is not a protype but a type
constructor. A relation R : A B in a general category can be seen as a subobject of the product A × B, and
its legs to A and B give a triangle cell

XR

A B

π1 π2

R

τR
where XR = { (a, b) ∈ A × B | R(a, b) } .

This triangle cell is a universal triangle cell whose base is R. In a general virtual double category, such a
universal object is called a tabulator of a loose arrow A B.

Definition 4.4 (Tabulators[GP99]). A (1-dimensional) tabulator of a loose arrow α : I J is an object
{|α|} equipped with a pair of tight arrows ℓα : {α} I and rα : {α} J and a cell

{α}

I J

ℓα rα

α

τα

such that, for any cell ν on the left below, there exists a unique tight arrow tν : X {|α|} that makes the
following two cells equal.

X

I J

h k

α

ν
=

X

{α}

I J

h

⟲
k

⟲

tν

ℓα rα

α

τα

Henceforth, we call a dataset (X, h, k, ν) a cone over α with the apex X. ■

Corresponding to the tabulators in the virtual double categories, we introduce the comprehension type
{|-|} to FVDblTT. The formation rule for the comprehension type is the following:

x : I # y : J ⊢ ¸ protype
{|¸|} type

This comes equipped with the constructor

x : I # y : J ⊢ ¸ protype
w : {|¸|} ⊢ l(w) : I w : {|¸|} ⊢ r(w) : J w : {|¸|} |⊢ tab{|¸|}(w) : ¸[l(w)/x # r(w)/y]

The comprehension type {|-|} is interpreted as the tabulators in the VDCs. In the VDC Prof, the tabulator
of a profunctor P : C D is given by two-sided Grothendieck construction, which results in a two-sided
discrete fibration from C to D. A frequently used example of this construction is the comma category for
a pair of functors F : C E and G : D E as the tabulator of the profunctor E(F (−), G(−)), see [LR20] for
more details. The VDC Rel has the tabulators if we ground the double category to an axiomatic system of set
theory with the comprehension axiom, as the tabulator of a relation R : A B is given by the set of all the
pairs (a, b) such that R(a, b) holds.

In the presence of the unit protype ↛, we should add some rules concerning the compatibility between
the comprehension type and the path protype. This is because, in many examples of double categories, the
tabulators have not only the universal property as in Definition 4.4 but also respect the units, although the
original universal property of the tabulators is enough to detect the tabulators in a double category. This issue
is thoroughly discussed in [GP99]. Here, we give a slightly generalized version of the tabulators in virtual double
categories with units.

Definition 4.5 (2-dimensional universal property of tabulators). In a virtual double category with units, an
unital tabulator {α} of a loose arrow α : I J is a tabulator of α in the sense of Definition 4.4, which also
satisfies the following universal property. Suppose we are given any pair of cones (X, h, k, ν) and (X ′, h′, k′, ν′)

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 15

over α and a pair of cells ς, ϑ such that the following equality holds.

X X ′

I I J

I J

γ

ςh h′

ν′
k′

UI

∼ =

α

α

=

X X ′

I J J

I J

h k

γ

ϑν
k′

α

∼ =

UJ

α

Then, there exists a unique cell ϱ for which the following equalities hold.

X X ′

{α} {α}

I I

γ

tν ϱ tν′

U{α}
ℓα Uℓα

ℓα

UI

=
X X ′

I I

γ

h ς h′

UI

,

X X ′

{α} {α}

J J

γ

tν ϱ tν′

U{α}
rα

Urα

rα

UJ

=
X X ′

J J

γ

k ϑ k′

UJ

■

This universal property determines what the unit on the apex of the tabulator should be. Appendix B.3 will
present the corresponding rules for the comprehension type {|-|} in FVDblTT with the unit protype ↛.
Predicate logic. When we work with the type theory FVDblTT for the purpose of reasoning about predicate
logic, we consider types, terms, protypes, and proterms to represent sets, functions, predicates (or propositions),
and proofs, respectively. However, the type theory FVDblTT, as it is, treats the protypes in a context ` # ´
and those in a context ´ # ` as different things. In this sense, the type theory FVDblTT as predicated logic
has directionality. If one wants to develop a logic without a direction, one can simply add the following rules
to the type theory.

` # ´ ⊢ ¸ protype
´ # ` ⊢ ¸

◦ protype
`0 # · · · # `m | a1 : ¸1 · · · an : ¸n ⊢ — : ˛
`m # · · · # `0 | an : ¸◦

n · · · a1 : ¸◦
1 ⊢ —

◦ : ˛◦

These rules are the counterparts of the structure of involution in VDCs.
If one also wants to make the type theory FVDblTT proof irrelevant, one can reformulate protype isomor-

phism judgment as equality judgments of protypes and add the rule stating that all the proterms are equal. It
is the counterpart of the flatness [GP99] or local preorderedness [HN23] of VDCs.

4.2. Examples of calculus This section exemplifies how one can reason about category theory and logic
formally in the type theory FVDblTT.

Example 4.6 (Ninja (co)Yoneda Lemma). One of the most fundamental results in category theory is the
Yoneda Lemma, and it has a variety of presentations in the literature. Here we present one called the Ninja
Yoneda Lemma [Lor21, Proposition 2.2.1]: given a category C and a functor F : Cop Set, we have the canonical
isomorphism

F ∼=
ˆ
X∈C

[C(X, −), FX].

This follows from the categorical fact that Prof is an FVDC with the structures listed above. Indeed, in the
type theory FVDblTT with the path protype ↛ and the filler protype ▷, one can deduce the following:

y : I # · ⊢ Yoneda : (x↛I y) ▷x:I ¸(x) ∼≡ ¸(y)

Similarly, we have
y : I # · ⊢ CoYoneda : (y↛I x) ⊙x:I ¸(x) ∼≡ ¸(y)

which expresses the coYoneda Lemma:
ˆ X∈C

C(−, X) × FX ∼= F.

In short, all the theorems in category theory that can be proven using this type theory fall into corollaries of
the theorem that Prof is a CFVDC with the structures corresponding to the constructors. Other examples
include the unit laws and the associativity of the composition of profunctors or the iteration of extensions and
lifts of profunctors.

Turning to the aspect of predicate logic, we can interpret the protype isomorphisms as the following logical
equivalences.

φ(y) ≡ ∀x ∈ I. (x = y) ⇒ φ(x)
φ(y) ≡ ∃x ∈ I. (x = y) ∧ φ(x)

16 HAYATO NASU

Example 4.7 (Isomorphism of functors). A natural transformation ξ : F G between two functors F, G : C D
is given by a family of arrows ξX : FX GX satisfying some naturality conditions. In the type theory
FVDblTT with the path protype ↛, this natural transformation can be represented by a proterm x : I |⊢
‰(x) : f (x) ↛I g(x). Here, the naturality condition automatically holds because we describe it as a proterm.
The isomorphism of functors can be expressed using this notion, but an alternative way is to use the protype
isomorphism.

Lemma 4.8. Given two terms, f (x) and g(x), in the same context, the following are equivalent.
(i) There are proterms ‰(x) : f (x) ↛I g(x) and ”(x) : g(x) ↛I f (x) such that ‰(x) � ”(x) ≡ reflf (x) and

”(x) � ‰(x) ≡ reflg(x).
(ii) There is a protype isomorphism Z : y↛J f (x) ∼≡ y↛I g(x).
Here, � is a tailored constructor defined as follows.

y : J # y ′ : J # y ′′ : J | a : y↛J y
′ # b : y ′↛J y

′′ ⊢ a� b ··≡ ind↛J
(a) : y↛J y

′′.

Proof. First, suppose (i) holds. We define a proterm “ by the following:

x : I |⊢ ‰ : f (x)↛J g(x)
y : J # y ′ : J # y ′′ : J | a : y↛J y

′ # b : y ′↛J y
′′ ⊢ a� b : y↛J y

′′

y : J # x : I # x ′ : I | a : y↛J f (x) # b : f (x)↛J g(x) ⊢ a� b[y/y # f (x)/y ′ # g(x)/y ′′] : y↛J g(x)
y : J # x : I | a : y↛J f (x) ⊢ “(a) : y↛J g(x)

Therefore, we have “(a), and in the same way, we can define a proterm b : y↛J g(x) ⊢ “′(b) : y↛J f (x), which
is the inverse of “ by simple reasoning.

Next, suppose (ii) holds. Let a : y↛J f (x) ⊢ “(a) : y↛J g(x) be the proterm witnessing the isomorphism.
By substituting f (x) for y and the refl for a, we obtain a proterm ‰(x) : f (x)↛J g(x). In the same way, we can
define a proterm ”(x) : g(x)↛J f (x), for which the two desired equalities hold. □

We therefore use the equalities y↛J f (x) and y↛J g(x) when f and g are already proven to be isomorphic.

Example 4.9 (Adjunction). In a virtual double category, the companion and conjoint of a tight arrow
f : A B is defined as the loose arrows f∗ : A B and f∗ : B A equipped with cells satisfying some equa-
tions of cells [GP04, CS10]. In a virtual equipment, it is known that the companion and conjoint of a tight
arrow f : A B are the restrictions of the units on B along the pairs of tight arrows (f, idB) and (idB , f),
respectively. These notions are the formalization of the representable profunctors in the virtual double cate-
gories. Therefore, the companions and conjoints of a term t(x) in the type theory FVDblTT should be defined
as t(x)↛I y and y↛I t(x), respectively.

The adjunction between two functors is described in terms of representable profunctors, which motivates
the following definition of the adjunction in the type theory FVDblTT. Remember a functor F : C D is left
adjoint to a functor G : D C if there is a natural isomorphism between the hom-sets

D(F−, •) ∼= C(−, G•).

In the type theory FVDblTT, a term t(x) is announced to be a left adjoint to a term u(y) if the following
equality holds:

x : I # y : J ⊢ t(x)↛J y ≡ x↛I u(y).

Example 4.10 (Kan extension). In [Kel05], the (pointwise) left Kan extension LanGF of a functor F : C D
along a functor G : C E is defined as a functor H : D E equipped with a natural transformation

C D

E

F

G H

⇒µ

with the following canonical natural transformation being an isomorphism:

D(HE, D)
∼= Ĉ (E(G−, E), D(F−, D)) naturally in D ∈ D, E ∈ E .

A protype isomorphism corresponding to this isomorphism is given by the following.

z : K # y : J ⊢ LeftKan : h(z)↛J y
∼≡ (g(x)↛K z) ▷x:I (f (x)↛J y)

We will demonstrate how proofs in category theory can be done in the type theory FVDblTT.

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 17

Proposition 4.11 ([Kel05, Theorem 4.47]). LanG′LanGF ∼= LanG′◦GF hold for any functors F : C D,
G : C E , and G′ : E F if the Kan extensions exist.

C D

E

E ′

F

G
LanGF

LanG′ LanGF∼=LanG′◦GF

⇒

G′

⇒

Proof. We associate F, G, G′, LanGF, LanG′LanGF, LanG′◦GF with the terms f (x), g(x), g ′(z), h(z), h′(z ′), and
h′′(z ′). We will have the desired protype isomorphism judgment by composing the protype isomorphisms in the
following order.

z ′ : K′ # y : J | h′(z ′)↛J y

∼≡
(
g ′(z)↛K′ z ′) ▷z:K (h(z)↛J y) (LeftKan)

∼≡
(
g ′(z)↛K′ z ′) ▷z:K ((g(x)↛K z) ▷x:I (f (x)↛J y)) (

(
g ′(z)↛K′ z ′) ▷z:K LeftKan)

∼≡
(
(g(x)↛K z) ⊙z:K

(
g ′(z)↛K′ z ′))

▷x:I (f (x)↛J y) (Fubini)
∼≡

(
g ′(g(x))↛K′ z ′) ▷x:I (f (x)↛J y) (CoYoneda ▷x:I (f (x)↛J y))

∼≡ h′′(z ′)↛K′ y (LeftKan−1)

Here, the protype isomorphism Fubini is given as LFubini1, Fubini2M, where Fubini1 and Fubini2 are the proterms
derived as follows.

x0 : I0 # x1 : I1 # x2 : I2 # x3 : I3 | a : ¸ # b : ˛ # c : ˛ ▷x1:I1 (¸ ▷x0:I0 ‚) ⊢ a ▶ (b ▶ c) : ‚
x0 : I0 # x2 : I2 # x3 : I3 | d : ¸⊙x1:I1 ˛ # c : ˛ ▷x1:I1 (¸ ▷x0:I0 ‚) ⊢ _ : ‚
x2 : I2 # x3 : I3 | c : ˛ ▷x1:I1 (¸ ▷x0:I0 ‚) ⊢ Fubini1 : (¸⊙x1:I1 ˛) ▷x0:I0 ‚

x0 : I0 # x1 : I1 # x2 : I2 | a : ¸ # b : ˛ ⊢ a⊙ b : ¸⊙x1:I1 ˛
x0 : I0 # x2 : I2 # x3 : I3 | d : ¸⊙x1:I1 : ˛ # e : (¸⊙x1:I1 ˛) ▷x0:I0 ‚ ⊢ d ▶ e : ‚

x0 : I0 # x1 : I1 # x2 : I2 # x3 : I3 | a : ¸ # b : ˛ # e : (¸⊙x1:I1 ˛) ▷x0:I0 ‚ ⊢ _ : ‚
x1 : I1 # x2 : I2 # x3 : I3 | b : ˛ # e : (¸⊙x1:I1 ˛) ▷x0:I0 ‚ ⊢ _ : ¸ ▷x0:I0 ‚

x2 : I2 # x3 : I3 | e : (¸⊙x1:I1 ˛) ▷x0:I0 ‚ ⊢ Fubini2 : ˛ ▷x1:I1 (¸ ▷x0:I0 ‚)

□

5. A syntax-semantics adjunction for FVDblTT

Stating that a type theory is the internal language of a categorical structure always comes with the notion of a
syntax-semantics adjunction. We set out to construct the term model of FVDblTT by following the standard
procedure of categorical logic.

5.1. Syntactic presentation of virtual double categories In order to let the type theory be an internal
language for FVDCs, we proceed to define the notion of a signature and a specification for the type theory.
Signatures assign the base type symbols, function symbols, protype symbols, and cell symbols of the type theory,
and specifications assign the equality that the type theory should satisfy.

Definition 5.1. A signature Σ for FVDblTT is a quadruple (TΣ , FΣ , PΣ , CΣ) where
• TΣ is a class of type symbols,
• FΣ(ff, fi) is a family of classes of function symbols for any ff, fi ∈ TΣ ,
• PΣ(ff # fi) is a family of classes of protype symbols for any ff, fi ∈ TΣ ,
• CΣ(ȷ1 # . . . # ȷn | !) is a family of classes of cell symbols for any ff0, . . . ,ffn ∈ TΣ , ȷi ∈ PΣ(ffi−1 # ffi) for

i = 1, . . . , n, and ! ∈ PΣ(ff0 # ffn) where n ≥ 0.
For simplicity, in the last item, we omit the dependency of the class of cells on ffi’s. Henceforth, f : ff fi

denotes a function symbol f ∈ FΣ(ff, fi), ȷ : ff fi denotes a protype symbol ȷ ∈ PΣ(ff # fi), and » : ȷ1 # . . . # ȷn !
denotes a cell symbol » ∈ CΣ(ȷ1 # . . . # ȷn | !).

A morphism of signatures Φ : Σ Σ′ is a family of functions sending the symbols of each kind in Σ to
symbols of the same kind in Σ′ so that a symbol dependent on another kind of symbol is sent to a symbol
dependent on the image of the former symbol. For instance, ȷ : ff fi is sent to a protype symbol of the form
Φ(ȷ) : Φ(ff) Φ(fi) where the assignment of type symbols has already been determined. ■

A typical example of a signature is the signature defined by a CFVDC D.

Definition 5.2. The associated signature of a CFVDC D is the signature ΣD defined by

18 HAYATO NASU

• TD is the set of objects of D, where we write ⌜I⌝ for I ∈ D as a type symbol,
• FD(⌜I⌝, ⌜J⌝) is the set of tight arrows I J in D, where we write ⌜f⌝ for f ∈ FD(⌜I⌝, ⌜J⌝) as a function

symbol,
• PD(⌜I⌝ # ⌜J⌝) is the set of loose arrows α : I J in D, where we write ⌜α⌝ for α ∈ PD(⌜I⌝ # ⌜J⌝) as a

protype symbol,
• CD(⌜α1⌝ # . . . # ⌜αn⌝ | ⌜β⌝) is the set of cells µ : α1; . . . ; αn ⇒ β in D, where we write ⌜µ⌝ for µ ∈

CD(⌜α1⌝ # . . . # ⌜αn⌝ | ⌜β⌝) as a cell symbol.
■

Now, we turn to the definition of a specification. We use the word “multi-class” to mean a class X with
multiplicities (Mx)x∈X, where Mx is a class. One can think of a multi-class as a (class-large) family of classes.

Definition 5.3. A specification E for a signature Σ is a pair (Epty, Etm, Eptm) where
• Epty =

(
Epty
ȷ,!

)
ȷ,!

is a multi-class of pairs of protype symbols (ȷ,!) of the same two-sided arity, say ff fi ,
whose elements are called protype isomorphism symbols.

• Etm is a class of pair of terms of the same type that are well-formed in Σ and Epty,
• Eptm is a class of proterm equality judgments that are well-formed in Σ, Epty and Etm.

When we say (Σ, E) is a specification, we mean that Σ is a signature and E is a specification for Σ.
A morphism of specifications Φ : (Σ, E) (Σ′, E′) is a morphism of signatures Φ : Σ Σ′ by which

every judgment in E is translated to a judgment that is derivable from E′, together with a multi-class function
Epty E′pty with the index function being the translation by Φ, that is, a family of functions Epty

ȷ,! E′pty
ȷΦ,!Φ for

each pair of protype symbols (ȷ,!). ■

Note that we say a judgment is well-formed in (Σ, E) if it is derivable from the basic derivation rules and the
following introduction rules:

ff ∈ TΣ

ff type
BaseType

f ∈ FΣ(ff, fi) ` ⊢ t : ff
` ⊢ f (t) : fi

Function
ȷ ∈ PΣ(ff, fi)

x : ff # y : fi ⊢ ȷ(x, y) protype
BasePro

» ∈ CΣ(ȷ1 # . . . # ȷn | !)
` | a1 : ȷ1 # . . . # an : ȷn ⊢ »{a1 # . . . # an} : ! (` = x0 : ff0, . . . , xn : ffn)

BaseCell
m ∈ Epty

ȷ,!

x : ff # y : fi ⊢ ˜m : ȷ ∼≡ !
BaseProIso

˜m is a mere symbol for readability. We treat terms like f (s) simply as an abbreviation for f (x)[s/x] and
similarly for proterms and cells, as mentioned in Subsection 3.1.

Definition 5.4. For a signature Σ and a CFVDC D, a Σ-structure M in D is a morphism of signatures
Σ ΣD. The identity morphism on ΣD can be deemed a ΣD-structure in D, which we call the canonical
(ΣD-)structure in D. ■

A Σ-structure in D defines what the type symbols, function symbols, protype symbols, and cell symbols
in Σ are interpreted as in D, and with the interpretations for the constructors of the type theory, we can
interpret types, terms, protypes, and proterms in Σ as objects, tight arrows, loose arrows, and globular cells in
D, respectively. We write M(s) for the interpretation of a symbol s in D under M and similarly for the other
items in the type theory.

Definition 5.5. Let Φ : (Σ, E) (Σ′, E′) be a morphism of signatures, and J be a judgment in the type theory
based on Σ. We write JΦ for the judgment in (Σ, E) defined by replacing each symbol in J with its image
under Φ. JΦ is called the translation of J via Φ. In particular, we write JM for the judgment in the type
theory based on ΣD for a Σ-structure M in D. ■

Definition 5.6 (Validity of equality judgments). We define the validity of equality judgments in a CFVDC
as follows.
• A term equality judgment t ≡ t ′ is valid in a Σ-structure M in a CFVDC D if M(t) and M(t ′) are equal

as tight arrows in D.
• A proterm equality judgment — ≡ —′ is valid in a Σ-structure M in a CFVDC D if M(—) and M(—′) are

equal as loose arrows in D.
■

With the definition of validity, one can canonically associate a specification ED to a CFVDC D, which
exhaustively contains the information of D.

Definition 5.7. The associated specification Sp(D) of a CFVDC D is the specification (ΣD, ED) with ΣD
as above, Etm

D
(resp. Eptm

D
) the set of all the valid equality judgments for terms (resp. proterms) in the canonical

structure in D, and Epty
D

the multi-class whose class indexed by (¸,˛) is the class of isomorphism cells from
M(¸) to M(˛) in D. ■

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 19

5.2. An overview of the proof We will provide an overview of our proof of the syntax-semantics biadjunction
for FVDblTT. The full proof is given in Subsection 5.3. First of all, we present the statement of the main
theorem.

Theorem 5.8. When we define the 2-cells of specifications in an appropriate way, we have a biadjunction
between the 2-category of CFVDCs and the 2-category of specifications in FVDblTT as follows:

Speci FibVDblcart
S

⊢

Sp
.

Here, Sp takes a VDC to its associated specification, and we will call S(Σ, E) the syntactic virtual dou-
ble category of the specification (Σ, E). Moreover, the components of the counit of this biadjunction are
equivalences.

The proof of this theorem is done in the following steps:
(i) We provide a more scarce version of FVDblTT, which we call crude FVDblTT. This type theory lacks

protype isomorphisms, and accordingly, we will arrange additional pairs of proterms as backups for the
protype isomorphism constructors.

(ii) We construct a biadjunction between the 2-category of CFVDCs and the 2-category of a crude version of
the specifications whose components of the counit are equivalences, which is much more straightforward
than the direct construction of the expected biadjunction.

(iii) We construct a relative biadjunction between the 2-category of crude specifications and that of specifications
in FVDblTT, which requires translations between the two type theories.

(iv) We show that the composite of the biadjunctions constructed in the previous two steps brings us the
expected biadjunction.

5.3. The syntactic virtual double category of a specification This section provides a detailed proof of
the main result of this paper, Theorem 5.8.

Definition 5.9. The type theory FVDblTT♢ has the same syntax as FVDblTT except that judgments are
limited to typing judgments for all entities and equality judgments for terms and proterms, but not for protype
isomorphisms. Accordingly, we drop the rules for the protype isomorphisms. Instead, we add the rules for the
typing judgments and the equality judgments for protype isomorphisms as in Figure 5, consisting of the proterm
constructors in both directions for the protype isomorphism constructors rest-ide, rest-iter, rest∧, rest⊤, repl and
the equality judgments showing that they are mutual inverses to each other. Their interpretations in a CFVDC
are defined in the same way as the protype isomorphism constructors in Subsection 3.2. ■

Since the type theory FVDblTT♢ lacks protype isomorphisms, we need to redefine the notion of a specifi-
cation for it accordingly.

Definition 5.10. A crude specification E♢ for a signature Σ is a pair (E♢
tm, E♢

ptm) where E♢
tm is a class of term

equality judgments, and E♢
ptm is a class of proterm equality judgments. A morphism of crude specifications

(Σ, E) (Σ′, E′) is similarly defined as in Definition 5.3 but without the data for protype isomorphisms.
For a CFVDC D, the associated crude specification (ΣD, E♢

D
) is the crude specification for ΣD with

E♢
D

as the equality judgments part of the associated specification of D. ■

In Subsection 3.2, we have seen how judgments in the type theory are interpreted in a CFVDC. Following
the philosophy of functorial semantics, the interpretation in a CFVDC should be captured by functors from
what should be called the syntactic VDC of a specification to the CFVDC. We will first define the syntactic
VDC of a crude specification and then use it to define the syntactic VDC of a specification.

Definition 5.11. For a crude specification (Σ, E), the syntactic virtual double category (or classifying
virtual double category) S♢(Σ, E) is the virtual double category whose
• objects are contexts ` ctx for Σ,
• tight arrows ` ´ = (y1 : J1, . . . , yn : Jn) are equivalence classes of sequences of terms ` ⊢ t1 : J1, . . . , tn : Jn

(or substitutions) modulo equality judgments derivable from (Σ, E),
• loose arrows ` ´ are protypes ` # ´ ⊢ ¸ protype derived from (Σ, E),
• cells of form

`0 · · · · · · `n

´0 ´1

¸1

S0 —

¸n

S1

˛

(5.1)

20 HAYATO NASU

` # ´ ⊢ ¸ protype

` # ´ | a : ¸[S/` # T/´] ⊢ rest-ide {a} : ¸

` # ´ ⊢ ¸ protype

` # ´ | a : ¸ ⊢ rest-ide {a} : ¸[`/` # ´/´]

` # ´ ⊢ ¸ protype

` # ´ | a : ¸[`/` # ´/´] ⊢ rest-iter {rest-iter {a}} ≡ a : ¸[`/` # ´/´]

` # ´ ⊢ ¸ protype

` # ´ | a : ¸ ⊢ rest-iter {rest-iter {a}} ≡ a : ¸

`
′′ ⊢ S

′
/ `

′
`

′ ⊢ S / ` ´
′′ ⊢ T

′
/´

′
´

′ ⊢ T /´ ` # ´ ⊢ ¸ protype

`
′′ # ´′′ | a : (¸[S/` # T/´]) [S′

/`
′ # T ′

/´
′] ⊢ rest-iter {a} : ¸[S[S′

/`
′]/` # T [T ′

/´
′]/´]

`
′′ ⊢ S

′
/ `

′
`

′ ⊢ S / ` ´
′′ ⊢ T

′
/´

′
´

′ ⊢ T /´ ` # ´ ⊢ ¸ protype

`
′′ # ´′′ | a : ¸[S[S′

/`
′]/` # T [T ′

/´
′]/´] ⊢ rest-iter {a} : (¸[S/` # T/´]) [S′

/`
′ # T ′

/´
′]

`
′′ ⊢ S

′
/ `

′
`

′ ⊢ S / ` ´
′′ ⊢ T

′
/´

′
´

′ ⊢ T /´ ` # ´ ⊢ ¸ protype

`
′′ # ´′′ | a : (¸[S/` # T/´]) [S′

/`
′ # T ′

/´
′] ⊢ rest-iter {rest-iter {a}} ≡ a : (¸[S/` # T/´]) [S′

/`
′ # T ′

/´
′]

`
′′ ⊢ S

′
/ `

′
`

′ ⊢ S / ` ´
′′ ⊢ T

′
/´

′
´

′ ⊢ T /´ ` # ´ ⊢ ¸ protype

`
′′ # ´′′ | a : [S[S′

/`
′]/` # T [T ′

/´
′]/´] ⊢ rest-iter {rest-iter {a}} ≡ a : [S[S′

/`
′]/` # T [T ′

/´
′]/´]

`
′ ⊢ S / ` ´

′ ⊢ T /´ ` # ´ ⊢ ¸ protype

`
′ # ´′ | a : ¸[S/` # T/´] ∧ ˛[S/` # T/´] ⊢ rest∧ {a} : (¸ ∧ ˛)[S/` # T/´]

`
′ ⊢ S / ` ´

′ ⊢ T /´ ` # ´ ⊢ ¸ protype

`
′ # ´′ | a : (¸ ∧ ˛)[S/` # T/´] ⊢ rest∧ {⟨ı0[S/` # T/´],ı1[S/` # T/´]⟩} ≡ a : (¸ ∧ ˛)[S/` # T/´]

`
′ ⊢ S / ` ´

′ ⊢ T /´ ` # ´ ⊢ ¸ protype

`
′ # ´′ | a : ¸[S/` # T/´] ∧ ˛[S/` # T/´] ⊢ ⟨ı0[S/` # T/´],ı1[S/` # T/´]⟩ {rest∧ {a}/a} ≡ a : (¸ ∧ ˛)[S/` # T/´]

`
′ ⊢ S / ` ´

′ ⊢ T /´

`
′ # ´′ | a : ⊤ ⊢ rest⊤ : ⊤[S/` # T/´]

`
′ ⊢ S / ` ´

′ ⊢ T /´

`
′ # ´′ | a : ⊤[S/` # T/´] ⊢ rest⊤{⟨ ⟩} ≡ a : ⊤[S/` # T/´]

`
′ ⊢ S0 / ` ≡ S1 / ` ´

′ ⊢ T0 /´ ≡ T1 /´ `
′ # ´′ ⊢ ¸ protype

`
′ # ´′ | a : ¸[S0/` # T0/´] ⊢ repl

S0,S1 # T0,T1
{a} : ¸[S1/` # T1/´]

`
′ ⊢ S0 / ` ≡ S1 / ` ´

′ ⊢ T0 /´ ≡ T1 /´ `
′ # ´′ ⊢ ¸ protype

`
′ # ´′ | a : ¸[S0/` # T0/´] ⊢ repl

S1,S0 # T1,T0
{repl

S0,S1 # T0,T1
{a}} ≡ a : ¸[S0/` # T0/´]

` # ´ ⊢ ¸ protype `
′ ⊢ S / ` ´

′ ⊢ T /´

`
′ # ´′ | a : ¸[S/` # T/´] ⊢ repl

S,S # T ,T
{a} ≡ a : ¸[S/` # T/´]

`
′ ⊢ S0 / ` ≡ S1 / ` ´

′ ⊢ T0 /´ ≡ T1 /´ `
′ # ´′ ⊢ ¸ protype

`
′ # ´′ | a : ¸[S0/` # T0/´] ⊢ repl

S1,S0 # T1,T0

{
repl

S0,S1 # T0,T1
{a}

}
≡ a : ¸[S0/` # T0/´]

`
′ ⊢ S0 / ` ≡ S1 / ` `

′ ⊢ S1 / ` ≡ S2 / ` ´
′ ⊢ T0 /´ ≡ T1 /´ ´

′ ⊢ T1 /´ ≡ T2 /´ `
′ # ´′ ⊢ ¸ protype

`
′ # ´′ | a : ¸ [S0/` # T0/´] ⊢ repl

S1,S2 # T1,T2
{repl

S0,S1 # T0,T1
{a}} ≡ repl

S0,S2 # T0,T2
{a} : ¸ [S2/` # T2/´]

Figure 5. FVDblTT♢: The rules for the proterm constructors and the equality judgments
(excluding the counterparts for the last nine rules in Appendix B.1, which can be directly
obtained by replacing rest-iter, rest-ide, repl with rest-iter , rest-ide , repl in those rules).

are equivalence classes of proterms

` | a1 : ¸1 # . . . # an : ¸n ⊢ — : ˛[S0/´0 # Sn/´n]

modulo equality judgments derivable from (Σ, E). It makes no difference which representatives we choose
for the equivalence classes of terms Si’s when we fix them as replacing Si’s with another family of terms
S′
i’s, which the transformation by repl allows, gives the bijection between the proterms for each equivalence

class.
■

Although tight arrows and cells are equivalence classes of terms and proterms, respectively, we will often
abuse the notation and write t and — for the representatives of the equivalence classes.

Proposition 5.12. The syntactic VDC S♢(Σ, E) for a crude specification (Σ, E) is a cartesian fibrational
virtual double category.

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 21

Proof sketch. The verification of the objects and the tight arrows making a category with finite products is the
same as the classical result [Jac99, Theorem 3.3.4]. The derivation of the proterm a in the context a : ¸ gives
the identity cell on ¸, and the substitution and the prosubstitution give the composition of cells. We illustrate
this with a small example.3 Suppose we have cells as follows:

`0 `1 `2

´0 ´1 ´2

ˆ0 ˆ1

¸1

S0 —1

¸2

S1 —2

S2

˛1
T0

˛2
T1

‚

,

meaning that we have proterms
`0 # `1 # `2 | a1 : ¸1 # a2 : ¸2 ⊢ —1 : ˛1[S0/´0 # S1/´1],

`2 | ⊢ —2 : ˛2[S1/´1 # S2/´2],
´0 # ´1 # ´2 | b1 : ˛1 # b2 : ˛2 ⊢ : ‚[T0/ˆ0 # T1/ˆ1].

From the third proterm, we can derive the proterm
`0 # `1 # `2 | b1 : ˛1[S0/´0 # S1/´1] # b2 : ˛2[S1/´1 # S2/´2]

⊢ rest-iter {[S0/´0 # S1/´1 # S2/´2]} : ‚ [T0[S0/´0]/ˆ1 # T1[S2/´2]/ˆ1] .

By the prosubstitution rule, we then have the proterm
`0 # `1 # `2 | a1 : ¸1 # a2 : ¸2

⊢
(

rest-iter {[S0/´0 # S1/´1 # S2/´2]}
)

{—1/b1 # —2/b2} : ‚ [T0[S0/´0]/ˆ1 # T1[S2/´2]/ˆ1] ,

which we define as the composite of the cells. The computation rules for proterms make this composition satisfy
the axioms of VDCs.

A restriction is given by the substitution in protypes. It is straightforward to check that the canonical cell

`0 `1

´0 ´1

¸[S0/´0 #S1/´1]

S0 rest S1

¸

given by `0 # `1 | a : ¸[S0/´0 # S1/´1] ⊢ a : ¸[S0/´0 # S1/´1]

exhibits ¸[S0/´0 # S1/´1] as a restriction of a loose arrow ¸ along S0 and S1 as tight arrows. By Proposition2.8,
it is enough to show that S♢(Σ, E) has loose arrows ¸ ∧ ˛ for any ¸,˛ and ⊤ for any pair of objects satisfying
the conditions we have shown therein. However, protype constructors ∧ and ⊤ that we have defined in the type
theory achieve this condition by the computation rules for proterms. □

The following lemma is easy to check.

Lemma 5.13. For any morphism of specifications Φ : (Σ, E) (Σ′, E′), the translation (−)Φ defines a mor-
phism S♢(Φ) : S♢(Σ, E) S♢(Σ′, E′), and this is functorial in Φ.

Following this lemma, we define the 2-cells of crude specifications.

Definition 5.14. A 2-cell of crude specifications Φ Ψ : (Σ, E) (Σ′, E′) is a transformation of VDCs
from S♢(Φ) to S♢(Ψ). We write ♢-Speci for the 2-category of crude specifications, morphisms of crude
specifications, and 2-cells of crude specifications. ■

Corollary 5.15. The assignment (Σ, E) 7→ S♢(Σ, E) defines a 2-functor S♢ : ♢-Speci FibVDblcart.

Proposition 5.16. The assignment that sends a CFVDC D to the associated crude specification (ΣD, E♢
D

)
extends to a 2-functor Sp♢ : FibVDblcart ♢-Speci which is a right biadjoint to S♢. The components of the
counit ϵD : S♢(Sp♢(D)) D are equivalences.

Proof. The assignment D 7→ (ΣD, E♢
D

) extends to a 1-functor Sp♢ by the definition of the associated crude
specification.

3See (ii) in Appendix B.2 for the detailed proof.

22 HAYATO NASU

Before arguing that Sp♢ is a 2-functor, we construct a virtual double functor εD : S♢(Sp♢(D)) D that will
turn out to be an equivalence. We have the canonical ΣD-structure inD. In the way we showed in Subsection3.2,
we can interpret all the items in Sp♢(D) in D. Now, we are to show that this defines a virtual double functor
from S♢(ΣD, E♢

D
) to D.4 The way we assign the data of VDCs is straightforward using Definition 3.1 except

for the cells. A cell of S♢(ΣD, E♢
D

) of the form (5.1) is interpreted as the composite of the cartesian cell on the
left and the cell JµK on the right, which is inductively defined in Definition 3.1.

J`0K J`1K

J´0K J´1K

J˛[S0/´0 #S1/´1]K

JS0K rest JS1K

J˛K

,
J`0K · · · · · · J`nK

J`0K J`nK

J¸1K

J—K

J¸nK

J˛[S0/´0 #S1/´1]K

The assignments are independent of the choice of terms and proterms since the equivalence relation is up to
the equality belonging to E♢

D
, that is, the equality in D. Proving that this defines a morphism in FibVDblcart

is a routine verification: the translation of the β-rule and the η-rule to the universal properties. We consult
Lemmas 2.5 and 2.7 to see that this is an equivalence. We only confirm the limited case of (iii) in Lemma 2.5;
the remaining part is similar. Up to isomorphism, loose arrows in the syntactic VDC are of the form ¸(x # y)
for a protype symbol ¸ in the signature ΣD. This allows us to reduce the proof to the case where the cell is
framed by arrows of the above form. Given a cell in D on the left below, we can find a cell in S♢(ΣD, E♢

D
) on

the right below that is mapped to the given cell by εD.

I0 · · · · · · In

J0 J1

α1

µ

αn

β

7→

x0 : ⌜I0⌝ · · · · · · xn : ⌜In⌝

x0 : ⌜I0⌝ xn : ⌜In⌝

⌜α1⌝(x0 # x1)

⌜µ⌝{a1 # . . . # an}

⌜αn⌝(xn−1 # xn)

⌜β⌝(x0 # xn)

If another cell in S♢(ΣD, E♢
D

) framed by the arrows above is mapped to the same cell in D by εD, then the
equality of the two proterms representing the cells belongs to E♢

D
by definition. Therefore, εD satisfies (iii) in

Lemma 2.5.
Using the equivalence εD, we know that there is the only way to define how the 2-functor Sp♢ should send

2-cells in such a way that εD is a 2-natural transformation.
Note that S♢(−) is locally fully faithful. In order to see that εD gives a counit of the biadjunction, it is

enough to show that any morphism F : S♢(Σ, E) D in FibVDblcart is presented, up to isomorphism, by
the composite of the image of a morphism F̃ : (Σ, E) Sp♢(D) by S♢ and εD. We can pick such a morphism
of signatures F̃ by taking the image of each symbol in Σ as some item in the syntactic VDC S♢(Σ, E). The
equality judgments in E are translated to the valid equality judgments in ΣD, meaning that the morphism of
signatures indeed defines a morphism of specifications F̃ : (Σ, E) Sp♢(D). The morphism εD ◦ S♢(F̃) only
differs from F by the inductive assignments of items in Sp♢(D) using the universal properties in D; hence, they
are isomorphic. □

One can translate specifications into crude specifications without losing information.

Definition 5.17. A crude translation of a proterm judgment ´ # ` | A ⊢ — : ˛ in FVDblTT is a proterm
judgment ´ # ` | A ⊢ —♢ : ˛ in FVDblTT♢ of the same context defined inductively as follows:
• a judgment derived by the rules except for Transport is translated to the judgment derived by the same

rules from the judgments already translated from the premises,
• the translation of a judgment derived by Transport is defined by induction on the derivation of protype

isomorphism judgments as in Figure 6.
A de-crude translation of a proterm judgment ´ # ` | A ⊢ — : ˛ in FVDblTT♢ is a proterm judgment

´ # ` | A ⊢ —♣ : ˛ in FVDblTT of the same context defined by replacing the constructor added in Definition5.9
with the corresponding constructor in FVDblTT, for example, rest-iter {a) with rest-iter{a} and rest-iter {a)
with rest-iter−1{a}. ■

The rules for FVDblTT♢ and the (de-)crude translations are formulated so that the following lemma holds.

Lemma 5.18. For a proterm judgment ´ # ` | A ⊢ — : ˛ derived from a specification (Σ, E) without the
use of Transport in FVDblTT, (—♢)♣ ≡ — is derivable in FVDblTT. Conversely, for a proterm judgment
´ # ` | A ⊢ — : ˛ derived from Σ in FVDblTT♢, (—♣)♢ ≡ — is derivable in FVDblTT♢.

Definition 5.19. A crude encoding CD(Σ, E) of a specification (Σ, E) is a crude specification defined by

4See (i) in Appendix B.2.

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 23

• the signature consists of data in Σ plus additional cell symbols ’m : ȷ ⇒ ! and m : ! ⇒ ȷ for each element
m ∈ Epty

ȷ,!,
• the equality judgments consist of the crude translations of equality judgments in E plus the equality judg-

ments
x : ff # y : fi | a : ȷ ⊢ m{’m{a}} ≡ a : ȷ and x : ff # y : fi | b : ! ⊢ ’m{ m{b}} ≡ b : ! (5.2)

for each m ∈ Epty
ȷ,!.

■

` # ´ ⊢ ¸ protype

` # ´ | a : ¸ ⊢ id¸{a}♢ .= a : ¸

` # ´ ⊢ ¸ protype

` # ´ | a : ¸ ⊢ id−1
¸ {a}♢ .= a : ¸

` # ´ ⊢ ˇ : ¸ ∼≡ ˛ ` # ´ ⊢ ˙ : ˛ ∼≡ ‚

` # ´ | a : ¸ ⊢ (˙ ◦ ˇ){a}♢ .= ˙{b}♢
{
ˇ{a}♢

/
b
}

: ‚

` # ´ ⊢ ¸ protype

` # ´ | a : ¸[`/` # ´/´] ⊢ rest-ide{a}♢ .= rest-ide {a} : ¸

` # ´ ⊢ ¸ protype

` # ´ | a : ¸ ⊢ rest-ide−1{a}♢ .= rest-ide {a} : ¸[`/` # ´/´]

`
′′ ⊢ S

′
/ `

′
`

′ ⊢ S / ` ´
′′ ⊢ T

′
/´

′
´

′ ⊢ T /´

`
′′ # ´′′ | a : (¸[S/` # T/´]) [S′

/`
′ # T ′

/´
′] ⊢ rest-iter{a}♢ .= rest-iter {a} : ¸[S[S′

/`
′]/` # T [T ′

/´
′]/´]

`
′′ ⊢ S

′
/ `

′
`

′ ⊢ S / ` ´
′′ ⊢ T

′
/´

′
´

′ ⊢ T /´ ` # ´ ⊢ ¸ protype

`
′′ # ´′′ | a : ¸

[
S[S′

/`
′]/` # T [T ′

/´
′]/´

]
⊢ rest-iter−1{a}♢ .= rest-iter {a} : (¸[S/` # T/´]) [S′

/`
′ # T ′

/´
′]

`
′ ⊢ S / ` ´

′ ⊢ T /´ ` # ´ ⊢ ¸ protype ` # ´ ⊢ ˛ protype

`
′ # ´′ | a : (¸ ∧ ˛) [S/` # T/´] ⊢ rest∧{a}♢ .= ⟨ı0[S/` # T/´],ı1[S/` # T/´]⟩ : ¸[S/` # T/´] ∧ ˛[S/` # T/´]

`
′ ⊢ S / ` ´

′ ⊢ T /´ ` # ´ ⊢ ¸ protype ` # ´ ⊢ ˛ protype

`
′ # ´′ | a : ¸[S/` # T/´] ∧ ˛[S/` # T/´] ⊢ rest−1

∧ {a}♢ .= rest∧ {a} : (¸ ∧ ˛) [S/` # T/´]

`
′ ⊢ S / ` ´

′ ⊢ T /´

`
′ # ´′ | a : ⊤[S/` # T/´] ⊢ rest⊤{a}♢ .= ⟨⟩ : ⊤

`
′ ⊢ S / ` ´

′ ⊢ T /´

`
′ # ´′ | a : ⊤ ⊢ rest−1

⊤ {a}♢ .= rest⊤{a} : ⊤[S/` # T/´]

`
′ ⊢ S0 / ` ≡ S1 / ` ´

′ ⊢ T0 /´ ≡ T1 /´ `
′ # ´′ ⊢ ¸ protype

`
′ # ´′ | a : ¸[S0/` # T0/´] ⊢ replS0,S1 # T0,T1 {a}♢ .= repl

S0,S1 # T0,T1
{a} : ¸[S1/` # T1/´]

`
′ ⊢ S0 / ` ≡ S1 / ` ´

′ ⊢ T0 /´ ≡ T1 /´ `
′ # ´′ ⊢ ¸ protype

`
′ # ´′ | a : ¸[S1/` # T1/´] ⊢ repl−1

S0,S1 # T0,T1
{a}♢ .= repl

S1,S0 # T1,T0
{a} : ¸[S0/` # T0/´]

` # ´ | a : ¸ ⊢ —{a} : ˛ ` # ´ | b : ˛ ⊢ —{{b}} ≡ b : ˛
` # ´ | b : ˛ ⊢ {b} : ¸ ` # ´ | a : ¸ ⊢ {—{a}} ≡ a : ¸

` # ´ | a : ¸ ⊢ L—, M{a}♢ .= —{a} : ˛

` # ´ | a : ¸ ⊢ —{a} : ˛ ` # ´ | b : ˛ ⊢ —{{b}} ≡ b : ˛
` # ´ | b : ˛ ⊢ {b} : ¸ ` # ´ | a : ¸ ⊢ {—{a}} ≡ a : ¸

` # ´ | b : ˛ ⊢ L—, M−1{a}♢ .= {b} : ¸

m ∈ Epty
ȷ,!

x : ff # y : fi | a : ȷ ⊢ ˜m{a}♢ .= ’m{a} : !

m ∈ Epty
ȷ,!

x : ff # y : fi | b : ! ⊢ ˜
−1
m {b}♢ .= m{b} : ȷ

Figure 6. Translations of transported proterms

We define the 2-category Speci of specifications so that the above assignment is a 2-functor.

Lemma 5.20. The assignment (Σ, E) 7→ CD(Σ, E) induces a (1-)functor from the category of specifications
and morphisms of specifications to the category of crude specifications and morphisms of crude specifications.

Proof sketch. For a morphism of specifications Φ : (Σ, E) (Σ′, E′), the assignment CD(Φ) sends the cell sym-
bols ’m and m to ’Φ(m) and Φ(m). The equality judgments (5.2) are translated into the equality judgments
of the same form and hence derivable from CD(Σ′, E′).5 □

Definition 5.21. A 2-cell of specifications Φ Ψ : (Σ, E) (Σ′, E′) is a 2-cell CD(Φ) CD(Ψ) in ♢-Speci,
hence a transformation of VDCs from S♢(CD(Φ)) to S♢(CD(Ψ)). We write Speci for the 2-category of
specifications, morphisms of specifications, and 2-cells of specifications. ■

Corollary 5.22. The assignment (Σ, E) 7→ S♢(CD(Σ, E)) defines a 2-functor CD: Speci FibVDblcart,
which is locally fully faithful.

5See (iv) in Appendix B.2.

24 HAYATO NASU

This 2-functor does not have a right biadjoint globally but a partial one.

Definition 5.23. A crude specification (Σ, E) is unary-cell-saturated if, for any proterm judgment x : ff # y :
fi | a : ȷ ⊢ # : ! derivable from E where ff, fi , ȷ,! belongs to the signature Σ, there is a cell symbol »# : ȷ ⇒ !
in Σ such that the equality judgment

x : ff # y : fi | a : ȷ ⊢ »#{a} ≡ # : !
is derivable from E. ■

A crude specification being saturated means that the symbols in the signature constitute a virtual double
category that is equivalent to the syntactic VDC of the specification. Let ♢-Specisat be the full subcategory of
♢-Speci whose objects are unary-cell-saturated crude specifications. Note that the associated crude specification
(ΣD, E♢

D
) of a CFVDCD is unary-cell-saturated. Note that the choice of the cell symbols »# may not be unique

but does not affect anything in the presence of E.

Proposition 5.24. The 2-functor CD: Speci ♢-Speci has a relative right biadjoint DCD: ♢-Specisat Speci
over the inclusion J : ♢-Specisat ♢-Speci.

Speci ♢-Speci

♢-Specisat

CD

υ⇒ JDCD
.

The components of the counit υ(P,D) : CD(DCD(P, D)) (P, D) are sent to the equivalence by S♢.

Here, a relative right biadjoint means that there is a natural equivalence
♢-Speci(CD(−), J(∗)) ≃ Speci(−, DCD(∗))

induced by the 2-cell above. See [FGHW18] on relative biadjunctions, where the notion is called a relative
pseudo-adjunction.

Proof. The outline of the proof is as follows. We first construct a specification DCD(P, D) and a morphism of
specifications υ(P,D) : CD(DCD(P, D)) (P, D) from a unary-cell-saturated crude specification (P, D). Then,
we show that for each (Σ, E) in Speci, the functor Speci ((Σ, E), DCD(P, D)) ♢-Speci (CD(Σ, E), (P, D))
defined by Ψ 7→ υ(P,D) ◦ CD(Ψ) is an equivalence. We divided the proof into two parts: the essential surjectivity
and the full faithfulness. We precede with the former, and then before the latter, we show the last statement
in the proposition to facilitate the proof.

For a unary-cell-saturated crude specification (P, D), a specification DCD(P, D) consists of the same signature
P , the multi-class D∼= defined from D by setting D∼=

ȷ,! to be the class of the pairs (#, &) of proterms
x : ff # y : fi | a : ȷ ⊢ #{a} : ! and x : ff # y : fi | b : ! ⊢ &{b} : ȷ

for which D derives the equality judgments
x : ff # y : fi | a : ȷ ⊢ &{#{a}} ≡ a : ȷ and x : ff # y : fi | b : ! ⊢ #{&{b}} ≡ b : !,

and the classes of term and proterm equality judgments consisting of the de-crude translations of the equality
judgments in Dtm and Dptm plus the equality judgments

x : ff # y : fi | a : ȷ ⊢ ˜(#,&){a} ≡ #{a}♣ : ! and x : ff # y : fi | b : ! ⊢ ˜−1
(#,&){b} ≡ &{b}♣ : ȷ (5.3)

for each protype isomorphism symbol (#, &) in D∼=
ȷ,!. Then we will have a morphism of specifications υ(P,D)

that sends the new cell symbols ’(#,&) and (#,&) to the cell symbols »# and »& in the definition of the unary-
cell-saturated crude specification (P, D) for any pair (#, &) in D∼=. It follows that υ(P,D) defines a morphism of
specifications since the equality judgments in CD(DCD(P, D)) are either in D or those of the form (5.2) for the
pairs in D∼=, which are translated derivable from D.

We first prove that this υ(P,D) leads to the essential surjectivity. Given a morphism of crude specifications
Φ : CD(Σ, E) (P, D), we can restrict it to a morphism of signatures Φ|Σ : Σ P . We now prove that it defines
a morphism of specifications Φ̂ : (Σ, E) DCD(P, D). By assumption, for each element m ∈ Epty

ȷ,! in E, the cell
symbols ’m and m in CD(Σ, E) are sent to some cell symbols fflm and –m in P . Since CD(Σ, E) can derive
the equality judgments (5.2), D derives the equality judgments

x : ffΦ # y : fiΦ | a : ȷΦ ⊢ –m{fflm{a}} ≡ a : ȷΦ and x : ffΦ # y : fiΦ | b : !Φ ⊢ fflm{–m{b}} ≡ b : !Φ.

We define the function Φ̂ : Epty
ȷ,! D∼=

ȷΦ,!Φ to send m to the pair (fflm,–m). Crude translations of the equality
judgments in E are translated by CD(Φ) to the equality judgments that are derivable from D in FVDblTT♢ by

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 25

assumption. Hence, in FVDblTT, we can simulate the derivation of the equality judgments in E translated by
Φ through the de-crude translations of the equality judgments in D in FVDblTT.6 Therefore, Φ̂ is a morphism
of specifications, and it is straightforward to check that υ(P,D) ◦ CD(Φ̂) is equal to Φ.

CD(Σ, E)

CD(DCD(P, D)) (P, D)

ΦCD(Φ|Σ)
=
υ(P,D)

in Speci♢.

To see that S♢(υ(P,D)) is an equivalence, we confer Lemma2.5. The equivalence on the tight part is apparent
since υ(P,D) does not change anything on types and terms. Next, for each loose arrow in S♢(CD(DCD(P, D))),
we can find a corresponding loose arrow in S♢(CD(DCD(P, D))) by taking the protype with precisely the same
presentation. Finally, when fixing a frame, the function on globular cells defined by υ(P,D) is to send proterm
judgments with the additional cell symbols ’(#,&) and (#,&) to the proterm judgments without them by replacing
the cell symbols with »# and »& . The surjectiveness is checked similarly to the above argument. We can also see
the injectiveness up to derivable equality by induction on the construction of the proterms using the fact that
from the crude translations of the equality judgments (5.3), the equalities ’(#,&)(a) ≡ #(a) and (#,&)(b) ≡ &(b)
are derivable from CD(DCD(P, D)).

The full faithfulness follows from the fact that the 2-cells in Speci and ♢-Speci are defined as the transfor-
mations of their syntactic VDCs, and S♢(υ(P,D)) is an equivalence. □

We obtain the main theorem by combining the (relative) biadjunctions Propositions 5.16 and 5.24,

Theorem 5.25 (Restatement of Theorem 5.8). Let S : Speci FibVDblcart be the composite S♢ ◦ CD.
The composite DCD ◦ Sp♢ assigns the associated specification in the sense of Definition 5.7 to a CFVDC, and
this 2-functor Sp and S form a biadjunction

Speci FibVDblcart
S

⊢

Sp
, i.e.,

Speci Speci♢ FibVDblcart

Speci♢
sat

CD

⊣

S
♢(−)

Sp♢DCD
.

The right adjoint Sp is a local equivalence, that is, Sp : FibVDblcart(D,D′) Speci(Sp(D), Sp(D′)) is an
equivalence for any pair D,D′.

Proof. Through Propositions5.16 and 5.24, the expected biadjunction follows from the general theory of relative
biadjunctions. Explicitly, for a specification S and a CFVDC D,

FibVDblcart
(
S

♢ (CD(S)) ,D
)

≃ Speci♢
(

CD(S), Sp♢(D)
)

(by Proposition 5.16)

≃ Speci
(

S, DCD(Sp♢(D))
)

(by Proposition 5.24)

The local equivalence of Sp follows from the fact that the counit of the biadjunction is pointwise an equivalence
because of Propositions 5.16 and 5.24. □

The unit of a syntax-semantics adjunction is called a term model in the context of type theory.

Definition 5.26. A term model of a specification (Σ, E) in a CFVDC is a canonical Σ-structure in the
syntactic VDC S(Σ, E), defined by regarding symbols ff, f : ff fi , ȷ : ff fi , and » : ȷ1 # . . . # ȷn ! as an
object x : ff, a tight arrow f (x), a loose arrow ȷ(x # y), and a globular cell »La1 # . . . # anM in S(Σ, E),
respectively. ■

When we define the 2-category of models of a specification (Σ, E) to be the comma 2-category (Σ, E) ↓ Sp(−),
the theorem above implies that the term model is bi-initial in this 2-category.

From the biadjunction, we can deduce the soundness and completeness theorems for the type theory.

Corollary 5.27 (Soundness and Completeness). Let (Σ, E) be a specification.
(i) Let M be its model in a CFVDC D, that is, a morphism M : (Σ, E) Sp(D). An equality judgment J is

valid in M whenever J is derivable from (Σ, E). If a protype isomorphism judgment ˇ : ¸ ∼≡ ˛ is derivable
from (Σ, E), then M(¸) ∼= M(˛) holds.

6See (iii) in Appendix B.2.

26 HAYATO NASU

(ii) If an equality judgment J is valid in every model of (Σ, E) in a CFVDC D, then J is derivable from (Σ, E).

Proof. If J is derivable from (Σ, E), then the term model S(Σ, E) validates J . The Σ-structure M is isomorphic
to the term model composed with the morphism S(Σ, E) D induced by M, and hence M validates J . Take
the term model of (Σ, E), and we will have the expected result. □

We end this section by discussing the extension of the results to the enhanced version of the type theory.
In Section 4, we have listed the protype constructors ↛, ⊙, ◁, ▷ and the type constructor {||}. One can make
the syntactic VDCs and the biadjunctions work for each enhanced version of the type theory by modifying the
specifications and other constructions accordingly. We briefly describe how to do this. Let T be a subset of the set
{↛, ⊙, ◁, ▷, {||} }. We write FVDblTTT for the type theory with the constructors in T and FibVDblT,cart for the
2-category of cartesian objects in FVDblTTT, the 2-category of FVDCs with the structures corresponding to
the constructors in T. We define the 2-category SpeciT and ♢-SpeciT of specifications and crude specifications
for FVDblTTT and FVDblTT♢

T in the same way as Speci, the only difference being that the equality judgments
and the isomorphism judgments can include the constructors in T. Rules for the constructors in T are added to
the original ones to admit a biadjunction between ♢-SpeciT and FibVDblT,cart, see Appendices A and B.3.
The relative biadjunction between SpeciT and ♢-SpeciT is also constructed in the same way as Proposition5.24,
and the biadjunction between SpeciT and FibVDblT,cart is obtained as in Theorem 5.25.

6. Related and Future Work

In this section, we will discuss how FVDblTT, in comparison with New and Licata’s “Virtual Equipment Type
Theory” (VETT) [NL23], stands out with its practicality and 2-categorical accuracy in the semantics. It is
protype isomorphism judgments that achieve the practicality, and the 2-categorical accuracy is what we have
developed in Section 5.

The most significant difference resides in protype isomorphism judgments in FVDblTT. The equality of sets
in VETT does not incorporate isomorphisms into the equational theory. VETT proves isomorphisms of sets
(profunctors) by constructing mutual inverses meta theoretically but cannot directly reason about them inside
the type theory. FVDblTT directly handles protype isomorphisms inside the type theory and shows what
can be done in a VDC as it is, which simulates reasoning on isomorphisms in category theory. The difference
comes partly from the presentation of profunctors. Profunctors in VETT look like ϕ : λα; β.R(α # β), and “λ”
represents quantification that respects the naturality of ϕ. Although this kind of presentation suits how one
argues about profunctors in ordinary category theory, it does not reflect how one formally develops category
theory in a VDC. In short, VETT is a formal language for category theory that can treat a wide range of
category theories, while FVDblTT is a formal language for formal category theory.

The semantics of VETT are given in a split fibrational7 virtual double category where all the restrictions
are chosen in a compatible way. If one considers a complete set of connectives given in this paper such as
composition or extensions, the stage of the semantics requires many choices and compatibility conditions, which
are sometimes complicated to handle. On the other hand, the semantics of FVDblTT is given in a CFVDC
with no restrictions chosen. We naively interpret the entities of the type theory, which is justified by allowing
the interpretation to be up to equivalence in the 2-category of VDCs. In practice, this enables us to take
any VDC with additional (non-split) structures that we need to interpret the type theory without worrying
about how they are chosen. On the theoretical side, a syntax-semantics adjunction is, in general, established
concerning 2-dimensional structures since the interpretation of the type theory is given only up to isomorphism.
The author does not know why the initiality of the syntactic model in VETT does not require 2-dimensional
care in [NL23]. In the context of Martin-Löf type theory, for example, similar problems called the coherence
problems have been studied in [Cur93, Hof95, CD14]. This paper is intended to give a 2-categorically accurate
semantics of a type theory for formal category theory. In particular, we pay special attention to how two
constructors in the type theory should be interrelated to each other from the perspective of 2-categories of
VDCs with additional structures, as discussed in Appendix A, providing persuasive evidence that the type
theory is a beneficial language both as an internal language for VDCs and as a language for formal category
theory in VDCs.

It is fair to mention what cannot be done in FVDblTT now. The type theory lacks the meta-level kinds
as in VETT, meaning that we cannot deal with categories or functors using polymorphism in the type theory.
On the other hand, VETT has different type-theoretic entities corresponding to the hierarchy of abstractness.
It has categories, sets, and meta-level entities called types, all with equational theory. The distinction between
categories in VETT and types in FVDblTT is that the former has the equational theory as elements of a meta-
level type “Cat” while the latter does not. When we consider the semantics of these type theories, it makes

7Although [NL23] uses the term “fibrant” instead of “fibrational”, we use the latter term to avoid confusion with the notion of
fibrant objects in model categories.

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 27

a significant difference that VETT requires VDCs indexed by a category with families (VETT judgmental
models) as a model, while FVDblTT merely requires a single VDC.

FVDblTT in this paper VETT in [NL23]
Type-theoretic entities types, terms, protypes, proterms categories, sets, types
Isomorphic reasoning ✓ ×

Semantics cartesian fibrational VDCs indexed split-fibrational virtual equipments
Syntax-semantics duality biadjunction initiality (without 2-dimensional care)

Polymorphism × ✓

Table 4. Comparison between FVDblTT and VETT

There are several directions for future work. First, we would like to extend the type theory FVDblTT
to include augmented virtual double categories [Kou20, Kou24]. The latter conceptualizes the notion of Kan
extension and Yoneda embedding inside this framework, and develops a formal category theory more flexibly
than the original virtual double categories. It would be interesting to investigate how category theory can be
formalized in the extended type theory. Second, the dependent version of the type theory FVDblTT should
be developed. There are several studies on directed type theory [LH11, Nor19, ANv23], and those are all based
on dependent types. One of the primary objectives of those studies is to obtain a substantial type theory for
higher categories as Martin-Löf type theory is for higher groupoids. The dependent version of the type theory
FVDblTT might offer another candidate for this purpose. Finally, we are interested in the relationship between
the type theory FVDblTT and other type theories or calculi for relations. In particular, we are interested in
the connection to diagrammatic calculi for relations such as the one in [BPS17, BDGHS24], or more directly, the
string diagrams for double categories [Mye18]. They may be understood as a string diagrammatic presentation
of the type theory FVDblTT. We hope to explore these connections in future work.

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of Functional Programming,
1(4):375–416, October 1991.

[Ale18] Evangelia Aleiferi. Cartesian Double Categories with an Emphasis on Characterizing Spans. PhD thesis, Dalhousie
University, September 2018, 1809.06940.

[AM24] Nathanael Arkor and Dylan McDermott. The formal theory of relative monads. Journal of Pure and Applied Algebra,
228(9):107676, September 2024, 2302.14014.

[ANv23] Benedikt Ahrens, Paige Randall North, and Niels van der Weide. Bicategorical type theory: Semantics and syntax.
Math. Structures Comput. Sci., 33(10):868–912, 2023.

[BDGHS24] Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Pawel Sobocinski. Diagrammatic Algebra of First Order
Logic, January 2024, 2401.07055.

[BPS17] Filippo Bonchi, Dusko Pavlovic, and Pawel Sobocinski. Functorial Semantics for Relational Theories, November 2017,
1711.08699.

[CD14] Pierre Clairambault and Peter Dybjer. The Biequivalence of Locally Cartesian Closed Categories and Martin-Löf Type
Theories. Mathematical Structures in Computer Science, 24(6):e240606, December 2014, 1112.3456.

[Cro94] Roy L. Crole. Categories for Types. Cambridge University Press, 1994.
[CS10] G. S. H. Cruttwell and Michael A. Shulman. A unified framework for generalized multicategories. Theory Appl. Categ.,

24:No. 21, 580–655, 2010.
[Cur93] P.-L. Curien. Substitution up to Isomorphism. Fundamenta Informaticae, 19(1-2):51–85, July 1993.
[DPP06] R. J. Macg. Dawson, R. Paré, and D. A. Pronk. Paths in double categories. Theory and Applications of Categories,

16:No. 18, 460–521, 2006.
[FGHW18] M. Fiore, N. Gambino, M. Hyland, and G. Winskel. Relative pseudomonads, Kleisli bicategories, and substitution

monoidal structures. Selecta Mathematica. New Series, 24(3):2791–2830, 2018.
[GH15] David Gepner and Rune Haugseng. Enriched ∞-categories via non-symmetric ∞-operads. Advances in Mathematics,

279:575–716, July 2015.
[GP99] Marco Grandis and Robert Paré. Limits in double categories. Géom. Diff. Catég, 40:162–220, January 1999.
[GP04] Marco Grandis and Robert Paré. Adjoint for double categories. Cahiers de Topologie et Géométrie Différentielle

Catégoriques, 45(3):193–240, 2004.
[Gra74] John W. Gray. Formal Category Theory: Adjointness for 2-Categories, volume 391 of Lecture Notes in Mathematics.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1974.
[HN23] Keisuke Hoshino and Hayato Nasu. Double categories of relations relative to factorisation systems, October 2023,

2310.19428.
[Hof95] Martin Hofmann. On the interpretation of type theory in locally cartesian closed categories. In Gerhard Goos, Juris

Hartmanis, Jan Van Leeuwen, Leszek Pacholski, and Jerzy Tiuryn, editors, Computer Science Logic, volume 933,
pages 427–441. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.

[HS98] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In Twenty-five years of construc-
tive type theory (Venice, 1995), volume 36 of Oxford Logic Guides, pages 83–111. Oxford Univ. Press, New York,
1998.

[Jac99] Bart Jacobs. Categorical logic and type theory, volume 141 of Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Co., Amsterdam, 1999.

28 HAYATO NASU

[Joh02] Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium: Volume 1. Oxford Logic Guides. Oxford
University Press, Oxford, New York, September 2002.

[Kel05] G. M. Kelly. Basic concepts of enriched category theory. Reprints in Theory and Applications of Categories,
(10):vi+137, 2005.

[Kou20] Seerp Roald Koudenburg. Augmented virtual double categories. Theory and Applications of Categories, 35:Paper No.
10, 261–325, 2020.

[Kou24] Seerp Roald Koudenburg. Formal category theory in augmented virtual double categories. Theory and Applications of
Categories, 41:Paper No. 10, 288–413, 2024.

[Lam22] Michael Lambert. Double Categories of Relations. Theory and Applications of Categories, 38(33):1249–1283, November
2022.

[Law63] F. William Lawvere. Functorial semantics of algebraic theories. Proceedings of the National Academy of Sciences of
the United States of America, 50:869–872, 1963.

[Law73] F. William Lawvere. Metric spaces, generalized logic, and closed categories. Rendiconti del Seminario Matematico e
Fisico di Milano, 43(1):135–166, December 1973.

[LCMV02] I.J. Le Creurer, F. Marmolejo, and E.M. Vitale. Beck’s theorem for pseudo-monads. Journal of Pure and Applied
Algebra, 173(3):293–313, September 2002.

[Lei02] Tom Leinster. Generalized enrichment of categories. volume 168, pages 391–406. 2002. Category theory 1999 (Coimbra).
[Lei04] Tom Leinster. Higher Operads, Higher Categories, volume 298 of London Mathematical Society Lecture Note Series.

Cambridge University Press, Cambridge, 2004.
[LH11] Daniel R. Licata and Robert Harper. 2-Dimensional Directed Type Theory. Electronic Notes in Theoretical Computer

Science, 276:263–289, September 2011.
[LHLL17] Ivan Di Liberti, Simon Henry, Mike Liebermann, and Fosco Loregian. FORMAL CATEGORY THEORY. course notes,

https://ncatlab.org/nlab/files/DLHLL-FormalCategoryTheory.pdf (accessed 2024-09-25), 2017.
[Lor21] Fosco Loregian. (Co)End Calculus, volume 468 of London Mathematical Society Lecture Note Series. Cambridge

University Press, Cambridge, 2021.
[LR20] Fosco Loregian and Emily Riehl. Categorical notions of fibration. Expo. Math., 38(4):496–514, 2020.
[LS86] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic, volume 7 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge, 1986.
[Mye18] David Jaz Myers. String diagrams for double categories and equipments, 2018, 1612.02762.
[Nas24] Hayato Nasu. An internal logic of virtual double categories, 2024, 2410.06792.
[NL23] Max S. New and Daniel R. Licata. A Formal Logic for Formal Category Theory. In Orna Kupferman and Pawel

Sobocinski, editors, Foundations of Software Science and Computation Structures, volume 13992, pages 113–134.
Springer Nature Switzerland, Cham, 2023.

[nLa24] nLab authors. SEAR. https://ncatlab.org/nlab/show/SEAR, September 2024. Revision 68.
[Nor19] Paige Randall North. Towards a directed homotopy type theory. In Barbara König, editor, MFPS 2019, London, UK,

June 4-7, 2019, volume 347 of Electronic Notes in Theoretical Computer Science, pages 223–239. Elsevier, 2019.
[Rui24] Jaco Ruit. Formal category theory in ∞-equipments i, 2024, 2308.03583.
[RV17] Emily Riehl and Dominic Verity. Kan extensions and the calculus of modules for ∞–categories. Algebraic & Geometric

Topology, 17(1):189–271, January 2017.
[RV22] Emily Riehl and Dominic Verity. Elements of ∞-Category Theory. Cambridge Studies in Advanced Mathematics.

Cambridge University Press, Cambridge, 2022.
[See84] R. A. G. Seely. Locally cartesian closed categories and type theory. Mathematical Proceedings of the Cambridge

Philosophical Society, 95(1):33–48, January 1984.
[Shu08] Michael Shulman. Framed bicategories and monoidal fibrations. Theory Appl. Categ., 20:No. 18, 650–738, 2008.
[Shu13] Michael Shulman. Enriched indexed categories. Theory Appl. Categ., 28:616–696, 2013.
[Str14] T. Streicher. A model of type theory in simplicial sets: a brief introduction to Voevodsky’s homotopy type theory. J.

Appl. Log., 12(1):45–49, 2014.
[SW78] Ross Street and Robert Walters. Yoneda structures on 2-categories. Journal of Algebra, 50(2):350–379, 1978.
[Uem23] Taichi Uemura. A general framework for the semantics of type theory. Math. Structures Comput. Sci., 33(3):134–179,

2023.
[Woo82] R. J. Wood. Abstract proarrows. I. Cahiers de Topologie et Géométrie Différentielle, 23(3):279–290, 1982.
[Woo85] R. J. Wood. Proarrows II. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 26(2):135–168, 1985.

Appendix A. Cartesianness of Structured Virtual Double Categories

We provide rationale for the rules in appendix B.3, by unpacking the cartesianness of virtual double categories
with structures.

First, we provide a general lemma on the cartesianness in the 2-category of some structured objects in a
2-category.

Lemma A.1. Let B, B′ be 2-categories with finite products (1, ⊗), and |−| : B′ B be a 2-functor preserving
finite products and locally full-inclusion, i.e., injective on 1-cells and bijective on 2-cells. For an object x of
B′ to be cartesian, it is necessary and sufficient that |x| is cartesian in B and that the 1-cells 1: 1 |x| and
× : |x| ⊗ |x| |x| right adjoint to the canonical 1-cells are essentially in the image of |−|.

Moreover, for a 1-cell f : x y of B′ where x and y are cartesian in B′, f is cartesian in B′ if and only if |f |
is cartesian in B.

https://ncatlab.org/nlab/files/DLHLL-FormalCategoryTheory.pdf
https://ncatlab.org/nlab/show/SEAR
https://ncatlab.org/nlab/revision/SEAR/68

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 29

Proof. The necessity of the first condition follows from the fact that any 2-functor preserves adjunctions, that
right adjoints are unique up to isomorphism, and that |−| preserves finite products. Since |−| is locally fully
faithful, it also reflects units, counits, and the triangle identities with respect to the adjunctions, and hence the
sufficiency of the first condition follows.

The necessity of the second condition is again immediate from the fact that |−| preserves finite products.
The sufficiency follws from the fact that |−| is locally fully faithful, in particular, reflects isomorphisms. □

Proposition A.2. Let FibUVDbl be the locally-full sub-2-category of FibVDbl spanned by the FVDCs
with units and functors preserving units. Then, a FVDC D with units is cartesian in FibUVDbl if and only
if
(i) D is a cartesian FVDC,
(ii) U1 ∼= ⊤1,1 in D(1, 1) canonically, and
(iii) for any I, J ∈ D, UI,J ∼= UI × UJ canonically in D(I × J, I × J).

Proof. By LemmaA.1, D is cartesian as a unital FVDC if and only if it is cartesian as a FVDC and the 1-cells
1: 1 D and × : D×D D are in FibUVDbl. The first condition is equivalent to (ii) since it sends the only
loose arrow in 1, which is the unit loose arrow, to ⊤1,1. The second condition is equivalent to (iii) since the
unit loose arrow of (I, J) in D(I × J, I × J) is (δI , δJ), which is sent to δI × δJ in D(I × J, I × J). □

The key idea is that in the virtual double categories D×D and 1, the unit loose arrows are given pointwise
by the unit loose arrows of D. We can discuss the cartesianness of some classes of FVDCs in parallel with the
above proposition.

Proposition A.3. Let FibCVDbl be the locally-full sub-2-category of FibVDbl spanned by the FVDCs
with composites of sequences of loose arrows of positive length and functors preserving those composites. A
VDC D in FibCVDbl is cartesian in this 2-category if and only if
(i) D is a cartesian FVDC,
(ii) ⊤1,1 ⊙ · · · ⊙ ⊤1,1 ∼= ⊤1,1 canonically in D(1, 1), and
(iii) for any paths of positive length

I0 I1 . . . In
α1 αn and J0 J1 . . . Jn

β1 βn

in D, we have
(α1 ⊙ · · · ⊙ αn) × (β1 ⊙ · · · ⊙ βn) ∼= (α1 × β1) ⊙ · · · ⊙ (αn × βn)

canonically in D(I0 × J0, In × Jn).

Proposition A.4. Let FibREVDbl be the locally-full sub-2-category of FibVDbl spanned by the FVDCs
with right extensions and functors preserving right extensions. A VDC D in FibREVDbl is cartesian in this
2-category if and only if
(i) D is a cartesian FVDC,
(ii) ⊤1,1 ▷ ⊤1,1 ∼= ⊤1,1 canonically in D(1, 1), and
(iii) for any quadruples of loose arrows

I0 I1 I2
α1

α2

and J0 J1 J2
β1

β2

in D, we have
(α1 ▷ α2) × (β1 ▷ β2) ∼= (α1 × β1) ▷ (α2 × β2)

canonically in D(I1 × J1, I2 × J2).

Appendix B. Details on type theory

B.1. The rules for equational and isomorphism theory In this section, we explicitly provide the rules for
the equational theory of terms and proterms. To begin with, we introduce some notations. Basically, we use
overlines • to denote horizontal concatenation of items, for example, {—/b} means {—1/b1 : ˛1 # . . . # —n/bn :
˛n}. Other notations are given in Figure 7.

30 HAYATO NASU

Abbreviation Given Data Meaning

´ ´ = (´0, . . . ,´n) ´0 # . . . # ´n

` = `i , j
` = (`i,j)(i,j)∈P

(The index set P is the set of pairs (i, j)
such that 0 ≤ i ≤ n and 0 ≤ j ≤ mi − 1
or (i, j) = (n,mn) for a given (mi)n

i=0.)

`0,0 # `0,1 # . . . # `0,n0−1 # `1,0 # . . . # `m,nm

`i = `i , j `i,0 # `i,1 # . . . # `i,ni

˜̀ = ˜̀
i , j̃ `0,0 # `1,0 # . . . # `m,0 # `m,nm

Ai
Ai = ¸i,0 # . . . # ¸i,ni for 1 ≤ i ≤ m

¸i,ni = ¸i+1,0 for 1 ≤ i ≤ m− 1 ¸1,0 # . . . # ¸1,n1−1 # ¸2,0 # . . . # ¸m,nm

Figure 7. Abbreviations of contexts

In addition, although the presentation of replacing a variable with a term does not make sense since we follow
the convention of explicit substitution, we still use it just as an abbreviation for the sake of readability. For
example, the items on the left-hand side in the following are abbreviations for the items on the right-hand side.

t(s0, . . . , sn) .= t[s0/x0, . . . , sn/xn]
¸(s0, . . . , sn # t0, . . . , tm) .= ¸[s0/x0, . . . , sn/xn # t0/y0, . . . , tm/ym]

(−→s0 # . . . # −→sn) .= [−→s0/−→x0 # . . . # −→sn/−→xn]
{—1 # . . . # —n} .= {—1/b1, . . . ,—n/bn}

The rules for protype isomorphisms are given as follows.
` # ´ ⊢ ¸ protype
` # ´ ⊢ id¸ : ¸ ∼≡ ¸

` # ´ ⊢ ˇ : ¸ ∼≡ ˛

` # ´ ⊢ ˇ
−1 : ˛ ∼≡ ¸

` # ´ ⊢ ˇ : ¸ ∼≡ ˛ ` # ´ ⊢ ˙ : ˛ ∼≡ ‚

` # ´ ⊢ ˙ ◦ ˇ : ¸ ∼≡ ‚

` # ´ ⊢ ¸ protype
` # ´ ⊢ rest-ide : ¸[`/` # ´/´] ∼≡ ¸

`
′′ ⊢ S

′
/ `

′
`

′ ⊢ S / ` ´
′′ ⊢ T

′
/´

′
´

′ ⊢ T /´ ` # ´ ⊢ ¸ protype

`
′′ # ´′′ ⊢ rest-iter : (¸[S/` # T/´]) [S′

/`
′ # T ′

/´
′] ∼≡ ¸

[
S[S′

/`
′]/` # T [T ′

/´
′]/´

]
`

′ ⊢ S / ` ´
′ ⊢ T /´ ` # ´ ⊢ ¸ protype ` # ´ ⊢ ˛ protype

`
′ # ´′ ⊢ rest∧ : (¸ ∧ ˛) [S/` # T/´] ∼≡ ¸[S/` # T/´] ∧ ˛[S/` # T/´]

`
′ ⊢ S / ` ´

′ ⊢ T /´

`
′ # ´′ ⊢ rest⊤ : ⊤[S/` # T/´] ∼≡ ⊤

`
′ ⊢ S0 / ` ≡ S1 / ` ´

′ ⊢ T0 /´ ≡ T1 /´ `
′ # ´′ ⊢ ¸ protype

`
′ # ´′ ⊢ replS0,S1 # T0,T1 : ¸[S0/` # T0/´] ∼≡ ¸[S1/` # T1/´]

` # ´ | a : ¸ ⊢ —{a} : ˛ ` # ´ | b : ˛ ⊢ {b} : ¸ ` # ´ | b : ˛ ⊢ —{{b}} ≡ b : ˛ ` # ´ | a : ¸ ⊢ {—{a}} ≡ a : ¸
` # ´ ⊢ L—, M : ¸ ∼≡ ˛

The rules for the equational theory of proterms are given as follows. It is worth noting that there are some
rules for the conversion trˇ {a} to guarantee that the introduced protype isomorphisms behave as expected. For
example, we have the rule L—, M{a} ≡ —{a} for the proterm — and that are mutually inverse to each other,
and the rule ˇ−1{ˇ{a}} ≡ a for a protype isomorphism ˇ . From these rules, one can derive that the inverse of
L—, M also has the expected behavior: L—, M−1{b} ≡ L,—M−1 {— {{b}}} ≡ L,—M−1 {L,—M {{b}}} ≡ {b}.
Equational theory of proterms

`0 # . . . # `n | a1 : ¸1 # . . . # an : ¸n ⊢ — : ˛
`0 # . . . # `n | a1 : ¸1 # . . . # an : ¸n ⊢ b{—} ≡ — : ˛

`0 # . . . # `n | a1 : ¸1 # . . . # an : ¸n ⊢ — : ˛
`0 # . . . # `n | a1 : ¸1 # . . . # an : ¸n ⊢ —{a1 # . . . # an} ≡ — : ˛

` | A ⊢ — : ¸ ` | A ⊢ : ˛

` | A ⊢ ı0{⟨—, ⟩} ≡ — : ¸

` | A ⊢ — : ¸ ` | A ⊢ : ˛

` | A ⊢ ı1{⟨—, ⟩} ≡ : ˛

` | A ⊢ — : ¸ ∧ ˛

` | A ⊢ ⟨ı0{—},ı1{—}⟩ ≡ — : ¸ ∧ ˛

` | A ⊢ — : ⊤

` | A ⊢ — ≡ ⟨ ⟩ : ⊤

`i | Ai ⊢ —i : ˛i (i = 1, . . . , n) ˜̀ | ˛1, . . . , ˛n ⊢ j : ‚j (j = 1, 2)

` | Ai ⊢ ⟨1, 2⟩{—/b} ≡ ⟨1{—/b}, 2{—/b}⟩ : ‚1 ∧ ‚2

`i | Ai ⊢ —i : ˛i (i = 1, . . . , n) ˜̀ | ˛1, . . . , ˛n ⊢ : ‚1 ∧ ‚2

` | Ai ⊢ ı0{{—/b}} ≡ ı0{}{—/b} : ‚1

`i | Ai ⊢ —i : ˛i (i = 1, . . . , n) ˜̀ | ˛1, . . . , ˛n ⊢ : ‚1 ∧ ‚2

` | Ai ⊢ ı1{{—/b}} ≡ ı1{}{—/b} : ‚2

`i,j,k | Ai,j ⊢ —i,j : ˛i,j (i = 1, . . . ,m, j = 1, . . . , ni)
˜̀

i,j,̃k
| bi,1 : ˛i,1 # . . . bi,ni

: ˛i,ni
⊢ i : ‚i (i = 1, . . . ,m) ˜̀

i,̃j,̃k
| c1 : ‚1 # . . . # cm : ‚m ⊢ – : ‹

` | A ⊢ (–{/c}) {—/b : ˛} ≡ –

{
i{—i,j/bi,j}

/
c

}
: ‹

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 31

`i ⊢ Si /´i (i = 1, . . . , n) ´ | A ⊢ — : ˛ ´ | A ⊢ : ‚

` | A[S/´] ⊢ ⟨—, ⟩[S0/´0 # . . . # Sn/´n] ≡
〈
—[S/´], [S/´]

〉
: (˛ ∧ ‚) [S0/´0 # Sn/´n]

`i ⊢ Si /´i (i = 1, . . . , n) ´ | A ⊢ — : ˛ ∧ ‚

` | A[S/´] ⊢ ı0{—[S/´]} ≡ ı0{—}[S/´] : ˛[S0/´0 # Sn/´n]

`i ⊢ Si /´i (i = 1, . . . , n) ´ | A ⊢ — : ˛ ∧ ‚

` | A[S/´] ⊢ ı1{—[S/´]} ≡ ı1{—}[S/´] : ‚[S0/´0 # Sn/´n]

`i ⊢ Si /´i (i = 1, . . . , n) ´i ⊢ Ti /ˆi (i = 1, . . . , n) ˆ | A ⊢ — : ˛

` | A[T/ˆ][S/´] ⊢
(
—[T/ˆ]

)
[S/´] ≡ —

[
T [S/´]/ˆ

]
: ˛[T0/ˆ0 # Tn/ˆn][S0/´0 # Sn/´n]

`i,j ⊢ Si,j /´i,j (i = 1, . . . ,m, j = 1, . . . , ni) ´i,j | Ai ⊢ —i : ˛i (i = 1, . . . ,m) ˜́i,j̃ | b1 : ˛1 # . . . # bn : ˛n ⊢ : ‚

` | A[S/´] ⊢ {—/b}[S/´] ≡
[
S̃i,j̃

/ ˜́i,j̃

]{
—i[Si,j/´i,j]

/
bi

}
: ‚[S0,0/´0,0 # Sm,nm/´m,nm]

` # ´ ⊢ ¸ protype
` # ´ | a : ¸ ⊢ id¸{a} ≡ a : ¸

` # ´ ⊢ ˇ : ¸ ∼≡ ˛

` # ´ | a : ¸ ⊢ ˇ
−1{ˇ{a}} ≡ a : ¸

` # ´ ⊢ ˇ : ¸ ∼≡ ˛

` # ´ | b : ˛ ⊢ ˇ{ˇ−1{a}} ≡ a : ¸

` # ´ ⊢ ˇ : ¸ ∼≡ ˛ ` # ´ ⊢ ˙ : ˛ ∼≡ ‚

` # ´ | a : ¸ ⊢ (˙ ◦ ˇ){a} ≡ ˙{ˇ{a}} : ‚
` # ´ ⊢ ¸ protype `

′ ⊢ S / ` ´
′ ⊢ T /´

`
′ # ´′ | a : ¸[S/` # T/´] ⊢ replS,S # T ,T {a} ≡ a : ¸[S/` # T/´]

`
′ ⊢ S0 / ` ≡ S1 / ` ´

′ ⊢ T0 /´ ≡ T1 /´ `
′ # ´′ ⊢ ¸ protype

`
′ # ´′ | a : ¸ [S0/` # T0/´] ⊢ replS0,S1 # T0,T1 {a} ≡ repl−1

S1,S0 # T1,T0
{a} : ¸ [S1/` # T1/´]

`
′ ⊢ S0 / ` ≡ S1 / ` `

′ ⊢ S1 / ` ≡ S2 / ` ´
′ ⊢ T0 /´ ≡ T1 /´ ´

′ ⊢ T1 /´ ≡ T2 /´ `
′ # ´′ ⊢ ¸ protype

`
′ # ´′ | a : ¸ [S0/` # T0/´] ⊢ replS1,S2 # T1,T2 {replS0,S1 # T0,T1 {a}} ≡ replS0,S2 # T0,T2 {a} : ¸ [S2/` # T2/´]

`
′ ⊢ S / ` ´

′ ⊢ T /´ ` # ´ ⊢ ¸ protype ` # ´ ⊢ ˛ protype
`

′ # ´′ | a : (¸ ∧ ˛)[S/` # T/´] ⊢ rest∧{a} ≡ ⟨ı0[S/` # T/´],ı1[S/` # T/´]⟩ : ¸[S/` # T/´] ∧ ˛[S/` # T/´]

` # ´ | a : ¸ ⊢ —{a} : ˛ ` # ´ | b : ˛ ⊢ {b} : ¸ ` # ´ | b : ˛ ⊢ —{{b}} ≡ b : ˛ ` # ´ | a : ¸ ⊢ {—{a}} ≡ a : ¸
` # ´ | a : ¸ ⊢ L—, M{a} ≡ —{a} : ˛

` # ´ ⊢ ¸ protype `
′ ⊢ S / ` ´

′ ⊢ T /´

`
′ # ´′ | a : ¸[`/` # ´/´][S/` # T/´] ⊢ rest-ide{a}[S/` # T/´] ≡ rest-iter{a} : ¸[S/` # T/´]

` # ´ ⊢ ¸ protype `
′ ⊢ S / ` ´

′ ⊢ T /´

`
′ # ´′ | a : ¸[S/` # T/´][`/` # ´/´] ⊢ rest-ide{a} ≡ rest-iter{a} : ¸[S/` # T/´]

`i+1 ⊢ Si / `i (i = 0, 1, 2) ´i+1 ⊢ Ti /´i (i = 0, 1, 2) `0 # ´0 ⊢ ¸ protype
`3 # ´3 | a : ¸[S0/`0 # T0/´0][S1/`1 # T1/´1][S1/`2 # T2/´2]

⊢ rest-iter {rest-iter{a}[S2/`2 # T2/´2]} ≡ rest-iter {rest-iter{a}} : ¸ [S0[S1/`1][S2/`2]/ `0 # T0[T1/´1][T2/´2]/´0]

`i+1 ⊢ Si / `i (i = 0, 1) ´i+1 ⊢ Ti /´i (i = 0, 1) `0 # ´0 ⊢ ¸ protype `0 # ´0 ⊢ ˛ protype
`2 # ´2 | a : (¸ ∧ ˛) [S0/`0 # T0/´0][S1/`1 # T1/´1]

⊢ rest∧ {rest-iter{a}} ≡ ⟨rest-iter{ı0{a}}, rest-iter{ı1{a}}⟩ {rest∧ {rest∧{a}[S1/`1 # T1/´1]} /a}
: ¸ [S0[S1/`1]/ `0 # T0[T1/´1]/´0] ∧ ˛ [S1/ `1 # T1/´1]

`1 ⊢ S0/`0 ≡ S
′
0/`0 ´1 ⊢ T0/´0 ≡ T

′
0/´0 `2 ⊢ S1 / `1 ´2 ⊢ T1 /´1

`2 # ´2 | a : ¸[S0/`0 # T0/´0][S1/`1 # T1/´1]

⊢ replS0[S1],S′
0[S1] # T0[T1],T ′

0[T1]{rest-iter{a}} ≡ rest-iter
{

replS0,S′
0 # T0,T ′

0
{a}[S1/`1 # T1/´1]

}
: ¸

[
S

′
0[S1/`1]

/
`0 # T

′
0[T1/´1]

/
´0

]
`1 ⊢ S0/`0 ´1 ⊢ T0/´0 `2 ⊢ S1 / `1 ≡ S

′
1/`1 ´2 ⊢ T1 /´1 ≡ T

′
1/´1

`2 # ´2 | a : ¸[S0/`0 # T0/´0][S1/`1 # T1/´1]

⊢ replS0[S1],S0[S′
1] # T0[T1],T0[T ′

1]{rest-iter{a}} ≡ rest-iter
{

replS1,S′
1 # T1,T ′

1
{a}

}
: ¸

[
S0[S′

1]
/
`0 # T0[T ′

1]
/
´0

]
` | a1 : ¸1 # . . . # am : ¸m ⊢ — : ˛

` ′ | a1 : ¸1[`0/`0 # `1/`1] # . . . # am : ¸m[`m−1/`m−1 # `m/`m] ⊢ rest-ide
{
—[`/`]

}
≡ —{rest-ide{a1} # . . . # rest-ide{am}} : ˛

` | a1 : ¸1 # . . . # am : ¸m ⊢ — : ˛ `
′
i ⊢ Si / `i (i = 0, . . . ,m) `

′′
i ⊢ S

′
i / `

′
i (i = 0, . . . ,m)

` ′′ | a1 : ¸1[S0/`0 # S1/`1][S′
0/`

′
0 # S′

1/`
′
1] # . . . # am : ¸m[Sm−1/`m−1 # Sm/`m][S′

m−1/`
′
m−1 # S′

m/`
′
m]

⊢ rest-iter
{
—[S/`][S′

/`
′]
}

≡
(
—

[
Si[S′

i
/` ′

i
]/`i

])
{rest-iter{a1} # . . . # rest-iter{am}} : ˛

[
S0[S′

0/`
′
0] # S1[S′

1/`
′
1]

]
` | a1 : ¸1 # . . . # am : ¸m ⊢ — : ˛ `

′
i ⊢ Si / `i ≡ Ti / `i (i = 0, . . . ,m)

` ′ | a1 : ¸1[S0/`0 # S1/`1] # . . . # am : ¸m[Sm−1/`m−1 # Sm/`m]
⊢ replS0,T0 # Sm,Tm

{
—[S/`]

}
≡ —

[
T/`

]{
replS0,T0 # S1,T1 {a1} # . . . # replSm−1,Tm−1 # Sm,Tm

{am}
}

: ˛ [T0 # Tm]

B.2. Justification of the derivation rules Justification of the derivation rules of an internal language has
two parts: to verify that each step of derivation is valid (soundness) and to ensure that they are sufficient
to derive all they should (completeness), both with respect to the semantics. In this paper, we have achived
these two parts implicitly along the way, but not thoroughly in the main text. This is because theese sorts of

32 HAYATO NASU

verification always require massive effort of induction, and it is not always easy to present them in a readable
manner. For FVDblTT and its semantics in CFVDCs, all we need to justify the rules is the following:

(i) The interpretation of typing judgments in FVDblTT♢ is well-defined, and two (pro)terms that are derivably
equal in FVDblTT♢ are interpreted as equal in CFVDCs.

(ii) When two (pro)terms are derivably equal in FVDblTT, so are their crude translations in FVDblTT♢.
For a derivable protype isomorphism judgment in FVDblTT, there is a corresponding pair of mutually
inverse proterms in FVDblTT♢, and they are interpreted as the same loose isomorphism in CFVDCs.

(iii) The syntactic VDC S♢(Σ, E) (Definition 5.10) of a crude specification is indeed a CFVDC.
(iv) When two (pro)terms are derivably equal in FVDblTT♢, so are their decrude translations in FVDblTT.

Since FVDblTT♢ connects FVDblTT and CFVDCs, the two parts of the justification are split into the four
points above. We have footnoted where these ingredients are used implicitly in the main text. We do not
provide the full proof, but instead illustrate the idea of the proof with instances.

(ii) and (iv) are straightforward to verify, because the translations and the rules are defined in a way that
they satisfy these properties.

What is critical to verify (i) concerns the interpretation of proterms and their equalities. Once you define
the interpretation of protypes, at which point you choose restrictions of loose arrows and other data using
some universal properties, two derivably equal proterms involving protypes whose interpretations require these
choices are interpreted as equal in CFVDCs when you fix the choices. For example, consider the following rule:

`i,j ⊢ Si,j /´i,j (i = 1, . . . ,m, j = 1, . . . , ni) ´i,j | Ai ⊢ —i : ˛i (i = 1, . . . ,m) ˜́
i,̃j

| b1 : ˛1 # . . . # bn : ˛n ⊢ : ‚

` | A[S/´] ⊢ {—/b}[S/´] ≡

[
S̃/ ˜́]{

—i[Si,j/´i,j]
/
bi

}
: ‚[S0,0/´0,0 # Sm,nm/´m,nm]

The interpretations of the proterms are shown to be equal using the universal properties of restriction and the
following equalities (here we omit the symbol J·K for simplicity and the names of the cells are written in red):

`0,0 `m,nm

`0,0 `m,nm

´0,0 ´m,nm

A[S/´]

{—/b}[S/´]

‚[S0,0/´0,0 #Sm,nm/´m,nm]
S0,0 rest Sm,nm

‚

(1)=

`0,0 `0,1 `1,0 `m,nm

´0,0 ´0,1 ´1,0 ´m,nm

´0,0 ´1,0 ´m,nm

´0,0 ´m,nm

S0,0

¸1,1[S0,1/´0,1 #S1,0/´1,0]

rest S0,1 rest S1,0 rest Sm,nm

¸1,1
—1 · · ·

˛1

‚

(2)=

`0,0 `0,1 `1,0 `m,nm

`0,0 `1,0 `m,nm

´0,0 ´1,0 ´m,nm

´0,0 ´m,nm

¸1,1[S0,1/´0,1 #S1,0/´1,0]

—1[S1,j/´1,j] · · ·

˛1[S0,0/´0,0 #S1,0/´1,0]
S0,0 rest S1,0 rest Sm,nm

˛1

‚

(3)=

`0,0 `0,1 `1,0 `m,nm

`0,0 `1,0 `m,nm

`0,0 `m,nm

´0,0 ´m,nm

¸1,1[S0,1/´0,1 #S1,0/´1,0]

—1[S1,j/´1,j] · · ·

[S̃/ ˜́]
‚[S0,0/´0,0 #Sm,nm/´m,nm]

S0,0 rest Sm,nm

‚

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 33

(4)=

`0,0 `m,nm

`0,0 `m,nm

´0,0 ´m,nm

A[S/´]

[
S̃/ ˜́] {

—i[Si,j/´i,j]
/
bi

}
‚[S0,0/´0,0 #Sm,nm/´m,nm]

S0,0 rest Sm,nm

‚

rest represents the horizontal concatenation of restrictions cells. The definition of the interpretation of substitu-
tions [−/−] are used in the equalities (1), (2), and (3), and the definition of the interpretation of prosubstitutions
{−/−} is used in the equalities (1) and (4). Because of the universal properties of restriction, we can show that
the interpretations of the two proterms are equal.

(iii) is presented as Proposition 5.12 in the main text, and is the most nontrivial part of the four. We give a
more detailed explanation of the proof of (iii) here. Let us recall the definition of the syntactic VDC S♢(Σ, E)
(Definition 5.10). In this virtual double category, a cell

`0 · · · · · · `n

´0 ´1

¸1

S0 —

¸n

S1

˛

is an equivalence class of proterms
` | a1 : ¸1 # . . . # an : ¸n ⊢ — : ˛[S0/´0 # Sn/´n]

modulo equality judgments derivable from (Σ, E). The identity cell on ¸ is given by the equivalence class of
the provariable ¸ as a proterm. A general composition of cells

`0,0 `1,0 `2,0 · · · `m,0

´0 ´1 ´2 · · · ´m

ˆ0 ˆ1

S0

¸1

—1 S1

¸2

—2 S2

¸m

—m Sn

T0
˛1

˛2 ˛m

T1

‚

is given as follows: first, the cells —i’s and are

`i−1,j | ai,1 : ¸i,1 # . . . # ai,ni
: ¸i,ni

⊢ —i : ˛i[Si−1/´i−1 # Si/´i], (i = 1, . . . ,m)

´i | b1 : ˛1 # . . . # bm : ˛m ⊢ : ‚[T0/ˆ0 # T1/ˆ1].

From the second proterm, we can derive the proterm˜̀
i,̃j

| b1 : ˛1[S0/´0 # S1/´1] # . . . # bm : ˛m[S0/´0 # S1/´1] ⊢ rest-iter
{

[
S/´

]}
: ‚ [T0[S0/´0] # T1[S1/´1]] .

The proof of (iii) is to show that this gives a well-defined CFVDC. Once we have shown it is a VDC, the
rest of the proof is routine as explained in the main text. The laws for the identities follow from the first two
axioms in Appendix B.1. The hardest part of the proof is to show that the composition of cells is associative.
The proof is as follows: the associativity of the composition of cells is presented as

(λ{ν1 # . . . # νm}) {µ1,1 # . . . # µ1,n1 # . . . # µm,1 # . . . # µm,nm } = λ
{

ν1{µ1,1 # . . . # µ1,n1 } # . . . # νm{µm,1 # . . . # µm,nm }
}

for any cells λ, ν1, . . . , νm, µi,j which are appropriately composable. For the syntactic VDC, this amounts to
showing that, for any proterms –, 1, . . . , m,—i,j as follows:

ˆ | ci : ‚i ⊢ – : ‹[U0/˘0 # U1/˘1],

´i−1,j | bi,j : ˛i,j ⊢ i : ‚i[Ti−1/ˆi−1 # Ti/ˆi], (i = 1, . . . , m)

`i−1,j−1,k | ai,j,k : ¸i,j,k ⊢ —i,j : ˛i,j [Si−1,j−1/´i−1,j−1 # Si−1,j /´i−1,j], (i = 1, . . . , m, j = 1, . . . , ni)

the following equality is derivable:(
rest-iter

{((
rest-iter

{
–
[
Ti/ˆi

]}){
i/ci

})[
Si,j /´i,j

]}){
—i,j /bi,j

}
≡

(
rest-iter

{
–

[
Ti[Si,j /´i,j]

/
ˆi

]}){(
rest-iter

{
i

[
Si−1,j /´i−1,j

]}){
—i,j /bi,j

}/
ci

}
. This is proved as follows: (˜̃S/˜́̃ = S0,0/´0,0 # Sm,nm /´m,nm)

(LHS) ≡
(

rest-iter
{(

rest-iter
{
–
[
Ti/ˆi

]{
i/ci

}})[
Si,j /´i,j

]}){
—i,j /bi,j

}
≡

(
rest-iter

{(
rest-iter {d}

{
–
[
Ti/ˆi

]{
i/ci

}/
d
})[

Si,j /´i,j

]}){
—i,j /bi,j

}
≡

(
rest-iter

{(
rest-iter {d}

[˜̃S/˜́̃]){
–
[
Ti/ˆi

]{
i/ci

}[
Si,j /´i,j

]/
d
}}){

—i,j /bi,j

}
≡

(
rest-iter

{
rest-iter {d}

[˜̃S/˜́̃]}){
–
[
Ti/ˆi

]{
i/ci

}[
Si,j /´i,j

]/
d
}{

—i,j /bi,j

}

34 HAYATO NASU

≡
(

rest-iter
{

rest-iter
{
–
[
Ti/ˆi

]{
i/ci

}[
Si,j /´i,j

]}}){
—i,j /bi,j

}
≡

(
rest-iter

{
rest-iter

{(
–
[
Ti/ˆi

] [
S̃i,j̃ /˜́i,j̃

]){
i

[
Si−1,j /´i−1,j

]/
ci

}}}){
—i,j /bi,j

}
≡

(
rest-iter

{(
rest-iter

{
–
[
Ti/ˆi

] [
S̃i,j̃ /˜́i,j̃

]}){
i

[
Si−1,j /´i−1,j

]/
ci

}}){
—i,j /bi,j

}
≡

(
rest-iter

{(
–

[
Ti[Si,j /´i,j]

/
ˆi

]{
rest-iter /ci

}){
i

[
Si−1,j /´i−1,j

]/
ci

}}){
—i,j /bi,j

}
≡

(
rest-iter

{
–

[
Ti[Si,j /´i,j]

/
ˆi

]{
rest-iter

{
i

[
Si−1,j /´i−1,j

]}/
ci

}}){
—i,j /bi,j

}
≡

(
rest-iter

{
–

[
Ti[Si,j /´i,j]

/
ˆi

]}){
rest-iter

{
i

[
Si−1,j /´i−1,j

]}/
ci

}{
—i,j /bi,j

}
≡ (RHS).

B.3. The derivation rules for the additional constructors In Section 4, we explain some additional
constructors of FVDblTT that are meaningful both in the contexts of formal category theory and predicate
logic. In this section, we provide all the derivation rules of the constructs.
Unit protype.

I type
x : I # y : I ⊢ x↛I y protype

↛-Form
I type

x : I | ⊢ reflI(x) : x↛I x
↛-Intro

w0 : J0 # zm : Km ⊢ ‚(w0 # zm) protype w : J # x : I # z : K | A(w # x) # B(x # z) ⊢ — : ‚(w0 # zm)

w : J # x : I # y : I # z : K | A(w # x) # p : x↛I y # B(y # z) ⊢ ind↛I
{—} : ‚(w0 # zm)

↛-Elim

w : J # x : I # z : K | A(w # x) # B(x # z) ⊢ — : ‚(w0 # zm)

w : J # x : I # z : K | A(w # x) # B(x # z) ⊢
(

ind↛I
{—}

)
[x/y]{reflI(x)/p} ≡ — : ‚(w0 # zm)

↛-Compβ

w : J # x : I # y : I # z : K | A(w # x) # p : x↛I y # B(y # z) ⊢ : ‚(w0 # zm)

w : J # x : I # y : I # z : K | A(w # x) # p : x↛I y # B(y # z) ⊢ ind↛I
{[x/y]{reflI(x)/p}} ≡ : ‚(w0 # zm)

↛-Compη

Unit protype meets product type.

· # · ⊢ exc↛,⊤ : ⟨⟩↛1 ⟨⟩ ∼≡ ⊤
↛-⊤

I type J type
x : I, y : J # x′ : I, y ′ : J ⊢ exc↛,∧ : ⟨x, y⟩↛I×J ⟨x′

, y
′⟩ ∼≡ x↛I x

′ ∧ y↛J y
′ ↛-∧

I type J type
x : I, y : J # x′ : I, y ′ : J | a : ⟨x, y⟩↛I×J ⟨x′

, y
′⟩ ⊢ exc↛,∧{a} ≡ ind↛I×J{⟨reflI(x), reflJ(y)⟩} : x↛I x

′ ∧ y↛J y
′

where

x : I, y : J | ⟨reflI(x), reflJ(y)⟩ : x↛I x
′ ∧ y↛J y

′

x : I, y : J # x′ : I, y ′ : J | a : ⟨x, y⟩↛I×J ⟨x′
, y

′⟩ ⊢ ind↛I×J{⟨reflI(x), reflJ(y)⟩} : x↛I x
′ ∧ y↛J y

′

Composition protype.

w : I # x : J ⊢ ¸(w # x) protype x : J # y : K ⊢ ˛(x # y) protype
w : I # y : K ⊢ ¸(w # x) ⊙x:J ˛(x # y) protype

⊙-Form

w : I # x : J ⊢ ¸(w # x) protype x : J # y : K ⊢ ˛(x # y) protype
w : I # x : J # y : K | a : ¸(w # x) # b : ˛(x # y) ⊢ a ⊙ b : ¸(w # x) ⊙x:J ˛(x # y)

⊙-Intro

v : H # w : I # x : J # y : K # z : L | C(v # w) # a : ¸(w # x) # b : ˛(x # y) # D(y # z) ⊢ — : ‚(v0 # zm)

v : H # w : I # y : K # z : L | C(v # w) # p : ¸(w # x) ⊙x:J ˛(x # y) # D(y # z) ⊢ ind⊙¸,˛
{—} : ‚(v0 # zm)

⊙-Elim

v : H # w : I # x : J # y : K # z : L | C(v # w) # ¸(w # x) # ˛(x # y) # D(y # z) ⊢ — : ‚(v0 # zm)

v : H # w : I # x : J # y : K # z : L | C(v # w) # a : ¸(w # x) # b : ˛(x # y) # D(y # z)
⊢

(
ind⊙¸,˛

{—}
)

{a ⊙ b/p} ≡ — : ‚(v0 # zm)

⊙-Compβ

v : H # w : I # y : K # z : L | C(v # w) # p : ¸(w # x) ⊙x:J ˛(x # y) # D(y # z) ⊢ : ‚(v0 # zm)

v : H # w : I # y : K # z : L | C(v # w) # p : ¸(w # x) ⊙x:J ˛(x # y) # D(y # z) ⊢ ind⊙¸,˛
{({a ⊙ b/p})} ≡ : ‚(v0 # zm)

⊙-Compη

Composition protype meets product type.

· # · ⊢ exc⊙,⊤ : ⊤ ⊙⟨⟩:· ⊤ ∼≡ ⊤
⊙-⊤

x : I # y : J ⊢ ¸(x # y) protype
y : J # z : K ⊢ ˛(y # z) protype u : L # v : M ⊢ ‚(u # v) protype v : M # w : N ⊢ ‹(v # w) protype

x : I, u : L # z : K,w : N ⊢ exc⊙,∧ : (¸(x # y) ∧ ‚(u # v)) ⊙⟨y,v⟩:J×M (˛(y # z) ∧ ‹(v # w))
∼≡ (¸(x # y) ⊙y:J ˛(y # z)) ∧ (‚(u # v) ⊙v:M ‹(v # w))

⊙-∧

AN INTERNAL LOGIC OF VIRTUAL DOUBLE CATEGORIES 35

x : I # y : J ⊢ ¸(x # y) protype y : J # z : K ⊢ ˛(y # z) protype u : L # v : M ⊢ ‚(u # v) protype v : M # w : N ⊢ ‹(v # w) protype
x : I, u : L # z : K,w : N | e : (¸(x # y) ∧ ‚(u # v)) ⊙⟨y,v⟩:J×M (˛(y # z) ∧ ‹(v # w))

⊢ exc⊙,∧{e} ≡ ind⊙¸∧‚,˛∧‹ {⟨ı0{a} ⊙ ı0{b},ı1{a} ⊙ ı1{b}⟩} : (¸(x # y) ⊙y:J ˛(y # z)) ∧ (‚(u # v) ⊙v:M ‹(v # w))

where

x : I # u : L # y : J # v : M # z : K # w : N | a : ¸(x # y) ∧ ‚(u # v) # b : ˛(y # z) ∧ ‹(v # w)
⊢ ⟨ı0{a} ⊙ ı0{b},ı1{a} ⊙ ı1{b}⟩ : (¸(x # y) ⊙y:J ˛(y # z)) ∧ (‚(u # v) ⊙v:M ‹(v # w))

x : I # u : L # z : K # w : N | e : (¸(x # y) ∧ ‚(u # v)) ⊙⟨y,v⟩:J×M (˛(y # z) ∧ ‹(v # w))
⊢ ind⊙¸∧‚,˛∧‹ {⟨ı0{a} ⊙ ı0{b},ı1{a} ⊙ ı1{b}⟩} : (¸(x # y) ⊙y:J ˛(y # z)) ∧ (‚(u # v) ⊙v:M ‹(v # w))

Filler protype.

w : I # x : J ⊢ ¸(w # x) protype w : I # y : K ⊢ ˛(w # y) protype
x : J # y : K ⊢ ¸(w # x) ▷w:I ˛(w # y) protype

▷-Form

w : I # x : J # y : L | a : ¸(w # x) # C(x # y) ⊢ — : ˛(w # ym)

x : J # y : L | C(x # y) ⊢ ind▷¸,˛
{—} : ¸(w # x) ▷w:I ˛(w # ym)

▷-Intro

w : I # x : J ⊢ ¸(w # x) protype w : I # y : K ⊢ ˛(w # y) protype
w : I # x : J # y : K | a : ¸(w # x) # e : ¸(w # x) ▷w:I ˛(w # y) ⊢ a ▶ e : ˛(w # y)

▷-Elim

w : I # x : J # y : L | a : ¸(w # x) # C(x # y) ⊢ — : ˛(w # ym)

w : I # x : J # y : L | a : ¸(w # x) # C(x # y) ⊢ a ▶

(
ind▷¸,˛

{—}
)

≡ — : ˛(w # ym)
▷-Compβ

x : J # y : L | C(x # y) ⊢ : ¸(w # x) ▷w:I ˛(w # ym)

x : J # y : L | C(x # y) ⊢ ind▷¸,˛
{a ▶ } ≡ : ˛(w # ym)

▷-Compη

y : J # z : K ⊢ ¸(y # z) protype x : I # z : K ⊢ ˛(x # z) protype
x : I # y : J ⊢ ˛(x # z) ◁z:K ¸(y # z) protype

◁-Form

x : J # y : J # z : K | C(x # y) # a : ¸(y # z) ⊢ — : ˛(x # z)

x : J # y : J | C(x # y) ⊢ ind◁¸,˛
{—} : ˛(x # z) ◁z:K ¸(y # z)

◁-Intro

x : I # y : J ⊢ ˛(x # z) protype y : J # z : K ⊢ ¸(y # z) protype
x : I # y : J # z : K | a : ˛(x # z) # e : ˛(x # z) ◁z:K ¸(y # z) ⊢ a ◀ e : ¸(y # z)

◁-Elim

x : I # y : J # z : L | a : ˛(x # z) # C(x # z) ⊢ — : ¸(y # zm)

x : I # y : J # z : L | a : ˛(x # z) # C(x # z) ⊢ a ◀

(
ind◁¸,˛

{—}
)

≡ — : ¸(y # zm)
◁-Compβ

y : J # z : L | C(y # z) ⊢ : ˛(x # z) ◁z:K ¸(y # z)

y : J # z : L | C(y # z) ⊢ ind◁¸,˛
{a ◀ } ≡ : ¸(y # zm)

◁-Compη

Filler protype meets product type.

· # · | exc▷,⊤ : ⊤ ▷· ⊤ ∼≡ ⊤
▷-⊤

x : I # y : J ⊢ ¸(x # y) protype
x : I # z : K ⊢ ˛(x # z) protype u : L # v : M ⊢ ‚(u # v) protype u : L # w : N ⊢ ‹(v # w) protype

y : J, v : M # z : K,w : N ⊢ exc▷,∧ : (¸(x # y) ▷x:I ˛(x # z)) ∧ (‚(u # v) ▷u:L ‹(v # w))
∼≡ (¸(x # y) ∧ ‚(u # v)) ▷x:I,u:L (˛(x # z) ∧ ‹(v # w))

▷-∧

x : I # y : J ⊢ ¸(x # y) protype
x : I # z : K ⊢ ˛(x # z) protype u : L # v : M ⊢ ‚(u # v) protype u : L # w : N ⊢ ‹(v # w) protype

y : J, v : M # z : K,w : N | e : (¸(x # y) ▷x:I ˛(x # z)) ∧ (‚(u # v) ▷u:L ‹(v # w))
⊢ exc▷,∧{e} ≡ ind▷¸∧‚,˛∧‹ {⟨ı0{a} ▶ı0(e),ı1{a} ▶ı1(e)⟩} : (¸(x # y) ∧ ‚(u # v)) ▷x:I,u:L (˛(x # z) ∧ ‹(v # w))

▷-∧-canon

where

x : I, u : L, y : J, v : M, z : K,w : N | a : (¸(x # y) ∧ ‚(u # v)) # e : (¸(x # y) ▷x:I ˛(x # z)) ∧ (‚(u # v) ▷u:L ‹(v # w))
⊢ ⟨ı0{a} ▶ı0(e),ı1{a} ▶ı1(e)⟩ : (˛(x # z) ∧ ‹(v # w))
y : J, v : M # z : K,w : N | e : (¸(x # y) ▷x:I ˛(x # z)) ∧ (‚(u # v) ▷u:L ‹(v # w))

⊢ ind▷¸∧‚,˛∧‹ {⟨ı0{a} ▶ı0(e),ı1{a} ▶ı1(e)⟩} : (¸(x # y) ∧ ‚(u # v)) ▷x:I,u:L (˛(x # z) ∧ ‹(v # w))

· # · ⊢ exc◁,⊤ : ⊤ ◁· ⊤ ≡ ⊤
◁-⊤

x : I # z : K ⊢ ¸(x # z) protype
y : J # z : K ⊢ ˛(y # z) protype u : L # w : N ⊢ ‚(u # w) protype v : M # w : N ⊢ ‹(v # w) protype

x : I, u : L # y : J, v : M ⊢ exc◁,∧ : (¸(x # z) ◁z:K ˛(y # z)) ∧ (‚(u # w) ◁w:N ‹(v # w))
∼≡ (¸(x # z) ∧ ‚(u # w)) ◁z:K,w:N (˛(y # z) ∧ ‹(v # w))

◁-∧

36 HAYATO NASU

x : I # z : K ⊢ ¸(x # z) protype
y : J # z : K ⊢ ˛(y # z) protype u : L # w : N ⊢ ‚(u # w) protype v : M # w : N ⊢ ‹(v # w) protype

x : I, u : L # y : J, v : M | e : (¸(x # z) ◁z:K ˛(y # z)) ∧ (‚(u # w) ◁w:N ‹(v # w))
⊢ exc◁,∧{e} ≡ ind◁¸∧‚,˛∧‹ {⟨ı0{a} ◀ı0(e),ı1{a} ◀ı1(e)⟩} : (¸(x # z) ∧ ‚(u # w)) ◁z:K,w:N (˛(y # z) ∧ ‹(v # w))

◁-∧-canon

where

x : I, u : L # y : J, v : M, z : K,w : N | a : (¸(x # z) ∧ ‚(u # w)) # e : (¸(x # z) ◁z:K ˛(y # z)) ∧ (‚(u # w) ◁w:N ‹(v # w))
⊢ ⟨ı0{a} ◀ı0(e),ı1{a} ◀ı1(e)⟩ : (˛(y # z) ∧ ‹(v # w))
x : I, u : L # y : J, v : M | e : (¸(x # z) ◁z:K ˛(y # z)) ∧ (‚(u # w) ◁w:N ‹(v # w))

⊢ ind◁¸∧‚,˛∧‹ {⟨ı0{a} ◀ı0(e),ı1{a} ◀ı1(e)⟩} : (¸(x # z) ∧ ‚(u # w)) ◁z:K,w:N (˛(y # z) ∧ ‹(v # w))

Comprehension type.

x : I # y : J ⊢ ¸ protype
{|¸|} type

{||}-Form
x : I # y : J ⊢ ¸ protype
w : {|¸|} ⊢ l(w) : I

{||}-Elim-ℓ
x : I # y : J ⊢ ¸ protype
w : {|¸|} ⊢ r(w) : J

{||}-Elim-r

x : I # y : J ⊢ ¸ protype
w : {|¸|} |⊢ tab{|¸|}{w} : ¸[l(w)/x # r(w)/y]

{||}-Elim-cell

x : I # y : J ⊢ ¸ protype ` ⊢ s : I ` ⊢ t : J ` |⊢ : ¸[s/x # t/y]
` ⊢ ind{||}(s, t,) : {|¸|}

{||}-Intro

` ⊢ s : I ` ⊢ t : J ` |⊢ : ¸[s/x # t/y]
` ⊢ l(ind{||}(s, t,)) ≡ s : I

{||}-Comp-ℓ
` ⊢ s : I ` ⊢ t : J ` |⊢ : ¸[s/x # t/y]

` ⊢ r(ind{||}(s, t,)) ≡ t : J
{||}-Comp-r

x : I # y : J ⊢ ¸ protype ` ⊢ s : I ` ⊢ t : J ` |⊢ : ¸[s/x # t/y]
` ⊢ tab{|¸|}{ind{||}(s, t,)} ≡ : ¸[s/x # t/y]

{||}-Comp-β

x : I # y : J ⊢ ¸ protype
w : {|¸|} ⊢ ind{||}(l(w), r(w), tab{|¸|}{w} ≡ w : {|¸|}

{||}-Comp-η

Comprehension type meets unit protype.

`0 ⊢ s0 : I `m ⊢ s1 : I `0 ⊢ t0 : J `m ⊢ t1 : J x : I, y : J ⊢ ¸(x, y) protype
`0 |⊢ —0 : ¸(s0 # t0) `m |⊢ —1 : ¸(s1 # t1) ` | B ⊢ i : s0 ↛I s1 ` | B ⊢ j : t0 ↛J t1 ` | B ⊢ i � —1 ≡ —0 � j

` | B ⊢ ind{||}(i, j,—0,—1) : ind{||}(s0, t0,—0)↛{|¸|} ind{||}(s1, t1,—1)
{||}-Elim

where

x : I # y : J | a : ¸(x # y) ⊢ a : ¸(x′ # y)
x : I # x′ : I # y : J | p : x↛I x

′ # a : ¸(x # y) ⊢ ind↛{a} : ¸(x # y) `0 ⊢ s0 : I `m ⊢ s1 : I `m ⊢ t1 : J

` | p : s0 ↛I s1 # a : ¸(s1 # t1) ⊢ ind↛{a}[s1/x′ # t1/y] : ¸(s0 # t1)
` | B ⊢ i : s0 ↛I s1 `m |⊢ —1 : ¸(s1 # t1)

` | B ⊢ i � —1 ··≡ ind↛{a}[s1/x′ # t1/y]{i/p : s0 ↛I s1 # —1/a : ¸(s1 # t1)} : ¸(s0 # t1)

and similarly for —0 � j.

`0 ⊢ s0 : I `m ⊢ s1 : I `0 ⊢ t0 : J `m ⊢ t1 : J x : I, y : J ⊢ ¸(x, y) protype
`0 |⊢ —0 : ¸[s0/x # t0/y] `m |⊢ —1 : ¸[s1/x # t1/y] ` | B ⊢ i : s0 ↛I s1 ` | B ⊢ j : t0 ↛J t1 ` | B ⊢ i � —1 ≡ —0 � j

` | B ⊢ appl(ind{||}(i, j,—0,—1)) ≡ i : s0 ↛I s1
{||}-Comp

`0 ⊢ s0 : I `m ⊢ s1 : I `0 ⊢ t0 : J `m ⊢ t1 : J x : I, y : J ⊢ ¸(x, y) protype
`0 |⊢ —0 : ¸[s0/x # t0/y] `m |⊢ —1 : ¸[s1/x # t1/y] ` | B ⊢ i : s0 ↛I s1 ` | B ⊢ j : t0 ↛J t1 ` | B ⊢ i � —1 ≡ —0 � j

` | B ⊢ appr (ind{||}(i, j,—0,—1)) ≡ j : t0 ↛J t1
{||}-Comp

Email address: hnasu@kurims.kyoto-u.ac.jp

Research Institute of Mathematical Science, Kyoto University

	1. Introduction
	Formal category theory
	Outline
	Acknowledgements

	2. Preliminaries on Virtual Double Categories
	3. Fibrational Virtual Double Type Theory
	Syntax
	Semantics

	4. Protype and type constructors for FVDblTT
	Common structures in VDCs and the corresponding constructors
	Examples of calculus

	5. A syntax-semantics adjunction for FVDblTT
	Syntactic presentation of virtual double categories
	An overview of the proof
	The syntactic virtual double category of a specification

	6. Related and Future Work
	References
	Appendix A. Cartesianness of Structured Virtual Double Categories
	Appendix B. Details on type theory
	The rules for equational and isomorphism theory
	Justification of the derivation rules
	The derivation rules for the additional constructors

