
NOTES ON SEAR
(DRAFT)

HAYATO NASU

This is a private note on one of the structural set theories called SEAR (Sets, Elements, and
Relations). It is originally introduced by Schulman in nLab [nLa23d]. The aim of this note is to
rearrange the original definition of SEAR and to create another version of SEAR called SEFAR (Sets,
Elements, Functions, and Relations). The main difference between SEAR and SEFAR is that SEFAR
has a function symbol as a primitive symbol. SEFAR is akin to the structural ZFC [nLa23c] in this
sense, but it still inherits the skeleton of SEAR, namely the tabulation of relations. Allowing a function
symbol as a primitive symbol makes it possible to extend the theory to other settings like predicative
constructive set theories, where the principle of unique choice is not provable. We also show that
SEFAR is equivalently axiomatized in the language of double categories.

Having written almost all the contents of this note, I found that, in the page of SEAR+ε [nLa23a],
he essentially introduces what I call SEFAR as a variant of SEAR to extend the theory to describe
the Hilbert’s ε operator. The important feature is that it does not have judgmental equality, but only
the equivalence relations serving as the equality. Although it seems not to be completely developed
in partucular in the predicative extension of this theory, this is what I wanted to construct. However,
the double categorical aspect of SEFAR is not discussed in the page, so it still has some value to be
written.

By first-order logic, we mean the constructive first-order logic unless otherwise stated.

1. Brief introduction of structural set theory

The origin of structural set theory is a monumantal paper [Law64] by Lawvere. The paper is a
pioneering work in categorical logic, connecting set theory and category theory. It can be seen as a
characterization of the category of sets, and as a noble foundation of mathematics via category theory.

The term “structural set theory” is coined by Schulman. The original idea of structural set theory
is to axiomatize set theory with sets and functions as primitive notions, not with sets and the global
membership relation. This perspective is also taken by many other authors, see [Lei14] for example. (It
would be better for readers to understand the idea of structural set theory by consulting [Shu19, nLa23b]
and other blog posts, [Mik09] for example, in the n-Category Café by Schulman.)

2. Supplementary material for double category theory

This article owes double category theory to the papers [HN23, Lam22]. but we will use additional
definitions for our purpose.

Definition 2.1. Let D be a double category. D has right extensions if for any p : A B in
D, the functor

p⊙− : D(B,C) D(A,C)
has a right adjoint for any C in D. We write p\(−) for the right adjoint of p⊙−. Similarly, D
has right liftings if for any p : A B in D, the functor

−⊙ p : D(C,A) D(C,B)

has a right adjoint for any C in D. We write (−)/p for the right adjoint of −⊙ p.

3. The axioms of SEAR

The language of SEAR. SEAR is based on dependent type theory with three sorts:
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• Set is a sort, considered as the type of sets,
• Element(A) is a sort dependent on A : Set, considered as the type of elements of A, and
• Relation(A,B) is a sort dependent on A : Set and B : Set, considered as the type of relations

from A to B.

For the sake of simplicity, we will write the type declarations x : Element(A) as x ∈ A, and the type
declarations p : Relation(A,B) as p : A B or A p

B.
The atomic formulas of SEAR consist of the following:

• For A : Set and x, y ∈ A, x = y is an atomic formula.
• For A,B : Set and p, q : A B, p = q is an atomic formula.
• For A,B : Set and p : A B, p(x, y) is an atomic formula.

Formulas are constructed from atomic formulas using the connectives and quantifiers of first-order
logic.

Remark 3.1. We do not have an equality symbol for sets. Since x ∈ A is not a formula but a
type declaration, we cannot even describe A = B using the existing formula.

Relational comprehension and functions. We introduce two basic axioms of SEAR.

Axiom 0 (Nontriviality). There exists A : Set such that x ∈ A exists.

Axiom 1 (Relational comprehension). For any A,B : Set and any first-order formula ϕ(x, y)
with free variables x ∈ A and y ∈ B, there exists a unique p : A B such that ϕ(x, y) ↔ p(x, y)
holds.

This is the axiom scheme, formulas ϕ(x, y) ranging over all first-order formulas with two free element-
variables.

Definition 3.2. A relation p : A B is functional if for any x ∈ A, there exists a unique
y ∈ B such that p(x, y) holds. For a functional relation p : A B and x ∈ A, we write p̃(x) for
the unique element y ∈ B such that p(x, y) holds. From this viewpoint, we call p̃ the function
associated with p. We write a function as f : A B instead of f : A B.

Remark 3.3. The notation p̃(x) is not adequate syntactically. However, since we allow the
existencial quantifier in formulas, we can easily rewrite a formula into an equivalent one without
the expression p̃(x).

Shulman treats functions in this way, but there can be another approach to define functions;
we can set an additional dependent sort Function(A,B) from the outset, and a built-in function
evA,B : Function(A,B) × A → B. We write f(x) instead of evA,B(f, x). As atomic formulas about
functions, we have f = g where f, g : A B. One need to add the following axiom Axiom UC not
present in original SEAR to get the equivalent foundation.

Axiom UC (Unique choice). For any A,B : Set and any functional relation p : A B, there
exists a function f : A B such that p(x, y) ↔ f(x) = y holds.

A careful observation reveals that the foundation consisting of Axioms0 and 1 in SEAR is equivalent
to the foundation consisting of Axioms 0 and 1 and axiom UC in the above approach.
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Axiom AUC (Adjunctional Unique Choice). For any A,B : Set and any p : A B and
q : B A, there exists a function f : A B such that p(x, y) ↔ ev(f, x) = y and q(y, x) ↔
ev(f, x) = y hold if the following hold:

∀x ∈ A∃y ∈ B (p(x, y) ∧ q(y, x)),
∀x ∈ A,∀y, y′ ∈ B (q(y, x) ∧ p(x, y′)) → y = y′.

Proposition 3.4. Under Axiom 1, Axiom UC is equivalent to Axiom AUC.

Proof. We prove the implication from Axiom UC to Axiom AUC by showing that p in the statement
of Axiom AUC is functional. The totality of p directly follows from the first formula of Axiom AUC.
For the uniqueness, pick b ∈ Y such that p(x, b) and q(b, x) hold for x ∈ A. If y, y′ ∈ B satisfy p(x, y)
and p(x, y′), respectively, then the second formula of Axiom AUC implies y = b = y′. Therefore, p is
functional, and there exists a function f : A B such that p(x, y) ↔ ev(f, x) = y holds. From the
first formula, we have y = f(x) → q(x, y), and from the second formula, we have the converse.

For the implication from Axiom AUC to Axiom UC, one should take q : B A to be the relation
corresponding to the formula y ∈ B, x ∈ A ⊢ p(x, y) by Axiom 1. □

Proposition 3.5. Under Axiom 1 and axiom UC, functions are extensional, i.e., for any
A,B : Set and for any functions f, g : A B, if f(x) = g(x) holds for any x ∈ A, then f = g
holds.

Proof. Let f, g be functions associated with p, q : A B, respectively. We have the following:

A,B : Set, p, q : A B, x ∈ A ⊢ p̃(x) = q̃(x)

⇔ A,B : Set, p, q : A B, x ∈ A ⊢ ∃y ∈ B (p(x, y) ∧ q(x, y))
⇒ A,B : Set, p, q : A B, x, y ∈ A ⊢ p(x, y) ↔ q(x, y).

By Axiom 1, p = q holds by uniqueness. □

If we drop Axiom UC, we have no way to define a new function from some given formula, nor to
deduce the equality of functions from the equality of their values. However, it is reasonable to assume
that we can compose functions in an effective way and functions are extensional.

This is the motivation of our formulation of SEFAR. It is an amalgamation of SEAR and ETCS
with elements.

SEFAR

SEFAR is based on dependent type theory with the following sorts and built-in terms (families
of terms):

• Set is a sort, considered as the type of sets,
• Element(A) is a sort dependent on A : Set, considered as the type of elements of A, and
• Function(A,B) is a sort dependent on A : Set and B : Set, considered as the type of

functions from A to B.
• Relation(A,B) is a sort dependent on A : Set and B : Set, considered as the type of

relations from A to B.
• evA,B : Function(A,B)×A→ B is a built-in function dependent on A,B : Set.
• idA : Function(A,A) is a built-in term dependent on A : Set.
• compA,B,C : Function(B,C) × Function(A,B) → Function(A,C) is a built-in function

dependent on A,B,C : Set.
As atomic formulas, we have the following:

• For A : Set and x, y ∈ A, x = y is an atomic formula.
• For A,B : Set and f, g : A B, f = g is an atomic formula.
• For A,B : Set and p, q : A B, p = q is an atomic formula.
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• For A,B : Set and p : A B, p(x, y) is an atomic formula.
For these three kinds of equalities, we assume the basic axioms of equality.

We continue to use the abbreviations we introduced above, and additionally, we write f ◦ g instead
of compA,B,C(f, g).

Axiom FE (Function extensionality). Functions are extensional, i.e., for any A,B : Set and
for any functions f, g : A B, ∀x ∈ Af(x) = g(x) implies f = g.

Axiom ECI (Evaluation of composition and identity). For any A,B,C : Set and for any
f : A B and g : B C, ∀x ∈ A (g ◦ f)(x) = g(f(x)) and ∀x ∈ A idA(x) = x hold.

Even if we drop Axiom UC, it is natural to assume that we can define a new function from some
given operation. This leads to the following axiom.

Axiom FO (Functions from operations). For any term judgment

A,B : Set, x ∈ A ⊢ φ(x) ∈ B

where φ(x) is a term of sort Element(B) dependent on x ∈ A, there exists a function f : A B
such that ∀x ∈ Af(x) = φ(x) holds.

Terms φ(x) range over all terms of sort Element(B) dependent on x ∈ A, so this is an axiom scheme.
From now on, we assume Axioms 0 and 1 and axiomsFE and ECI in SEFAR.

Lemma 3.6. Composition of functions is associative and unital.

Definition 3.7. For A,B,C : Set and p : A B and q : B C, we define p⊙ q : A C by the
formula x ∈ A, z ∈ C ⊢ ∃y ∈ Y (p(x, y) ∧ q(y, z)) with help of Axiom1. We call this relation the
composite of p and q.

Lemma 3.8. Composition of relations is associative and unital, where the unit is the equality
relation x ∈ A, x′ ∈ A ⊢ x = x′.

Proof. The statement follows from the basic axioms for equality including the Frobenius law of quan-
tifiers as below:

x ∈ A ⊢ ∃y ∈ B (φ(x, y) ∧ ψ(x)) ↔ (∃y ∈ B φ(x, y)) ∧ ψ(x).

□

Definition 3.9. For a model S of SEFAR, we define a locally-preordered (strict) double category
RelS as follows:

• The objects are sets.
• The vertical arrows are functions.
• The horizontal arrows are relations.
• The cell of the form

A B

C D

p

f g

q
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exists if and only if the following formula holds:

x ∈ A, y ∈ B ⊢ p(x, y) → q(f(x), g(y)).

There is at most one cell framed by given pairs of vertical and horizontal arrows.
We write SetS for the vertical category of RelS , and RelS for the horizontal bicategory of RelS .

It suffices to check that the composition of cells is well-defined. The vertical composition follows
from the substitution of variables. For the horizontal composition, suppose the following formulas hold:

x ∈ A, y ∈ B ⊢ p(x, y) → p′(f(x), g(y)),

y ∈ B, z ∈ C ⊢ q(y, z) → q′(g(y), h(z)).

Then, we have the following:

x ∈ A, z ∈ C ⊢ ∃y ∈ B (p(x, y) ∧ q(y, z))
⇒ x ∈ A, z ∈ C ⊢ ∃y ∈ B

(
p′(f(x), g(y)) ∧ q′(g(y), h(z))

)
⇒ x ∈ A, z ∈ C ⊢ ∃y′ ∈ B

(
p′(f(x), y′) ∧ q′(y′, h(z))

)
.

When we consider this meta-double category, we fix a model S of SEFAR and write Rel for RelS .
This double category is actually an equipment: for any niche

A B

C D

f g

q

in Rel, we have the restriction q(f, g) : A B of q along f and g as

x ∈ A, y ∈ B ⊢ q(f(x), g(y)).

In terms of this double category, AxiomFE states that Rel is unit-pure, while AxiomECI is necessary
for the vertical composition of the double category. Axiom AUC requires Rel to be Cauchy. Axiom 1
is so powerful that many consequences on the double category follow from it.

Tabulation. We introduce the third axiom of SEAR, which is not usually present in other set theories.

Axiom 2 (Tabulation). For any A,B : Set and any p : A B, there exist C : Set , l : C A,
and r : C B such that

∀x ∈ A,∀y ∈ B p(x, y) ↔ ∃z ∈ C (l(z) = x ∧ r(z) = y),

∀z, z′ ∈ C (l(z) = l(z′) ∧ r(z) = r(z′)) → z = z′.

Proposition 3.10. For any A,B : Set and p : A B, the set C in Axiom2 is a strong tabulator
of p in Rel in the sense of double category. In particular, such a C is unique up to isomorphism.

Proof. Left to the reader. □

We call such a triple (C, l, r), or simply C, a tabulation of p. We add this axiom to SEFAR from
now on.

From Axiom2, we can define the cartesian structure of Rel.

Proposition 3.11. Under the axioms of SEFAR including Axiom 2, we have the following:
(i) There exists a set 1 with a unique element. It gives the vertical terminal in Rel.
(ii) For any A,B : Set, there exists a set A×B with projections π0 : A×B A and π1 : A×

B B, which gives the vertical product of A and B in Rel.
Therefore, Rel is a unit-pure cartesian equipment.
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Proof. For (i), take a set A with an element a by Axiom 0. We define 1 to be the tabulation of the
relation defined by x ∈ A, y ∈ A ⊢ x = a ∧ y = a. The tabulation comes with l : 1 A and r : 1 A
such that z ∈ 1 ⊢ l(z) = r(z) = a, and for any z, z′ ∈ 1, if l(z) = l(z′) and r(z) = r(z′), then z = z′

holds. Since the value of l and r is always a, we have z = z′ for any z, z′ ∈ 1, and 1 is a set with a
unique element. Since the equality relation on 1 is always true, 1 is the vertical terminal in Rel.

For (ii), take a tabulation of the relation defined by x ∈ A, y ∈ B ⊢ x = x∧ y = y. Then, we have a
set A×B with functions π0 : A×B A and π1 : A×B B such that

x ∈ A, y ∈ B ⊢ ∃z ∈ A×B (π0(z) = x ∧ π1(z) = y),

z, z′ ∈ A×B ⊢ (π0(z) = π0(z
′) ∧ π1(z) = π1(z

′)) → z = z′.

This is equivalent to:

x ∈ A, y ∈ B ⊢ ∃!z ∈ A×B (π0(z) = x ∧ π1(z) = y).

It is easy to deduce the (2-dimensional) universal property of the product from this formula and
Axiom FE. □

By Axiom FO, x ∈ A corresponds to a function f : 1 A, which leads to the fact that Set is
well-pointed.

We define some basic classes of functions and relations. Let us write p◦ : B A for the relation
defined by y ∈ B, x ∈ A ⊢ p(x, y) for p : A B.

Definition 3.12. For A,B : Set and take f : A B and p : A B.
(i) f is injective if ∀x, x′ ∈ Af(x) = f(x′) → x = x′ holds.
(ii) f is surjective if ∀y ∈ B ∃x ∈ A f(x) = y holds.
(iii) p is bijective if p and p◦ are functional.

Proposition 3.13. Under the axioms of SEFAR,
(i) f is injective if and only if it is an inclusion in Rel.
(ii) f is surjective if and only if it is a final arrow in Rel.

Proof. First, we prove (i). A vertical arrow f : A B is an inclusion if and only if the identity cell

A A

B B

f = f

is a cartesian cell. Since Rel is locally preordered, this is equivalent to the existence of the horizontal
cell from IdB(f, f) to IdA.

Next, we prove (ii). A vertical arrow f : A B is final if and only if the bottom horizontal arrow
of the following opcartesian cell is a terminal in the horizontal hom-category:

A

B 1

f !

f∗!!

In Rel, f∗!! is the relation defined by

y ∈ B, z ∈ 1 ⊢ ∃x ∈ A (f(x) = y ∧ !(x) = z),

⇔ y ∈ B, z ∈ 1 ⊢ ∃x ∈ A (f(x) = y).

Therefore, f is final if and only if f is surjective. □

We would like to prove that Rel is a unit-pure double category of relations in the sense of DCR. We
can detect the fibrations in Rel as follows: A vertical arrow f : A B is a fibration if and only if there
exists a relation p : B 1 such that

y ∈ B, z ∈ 1 ⊢ (∃x ∈ Af(x) = y) ↔ p(y, z).
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This corresponds to the notion of subset defined in the nLab page of SEAR.

Lemma 3.14. Under the axioms of SEFAR, fibrations in Rel are closed under composition.

Proof. Let f : A B and g : B C be fibrations. Then, there exist relations p : B 1 and q : C 1
such that

y ∈ B, z ∈ 1 ⊢ (∃x ∈ A f(x) = y) ↔ p(y, z),

w ∈ C, z ∈ 1 ⊢ (∃y ∈ B g(y) = w) ↔ q(w, z).

Define the relation r : C 1 by

w ∈ C, z ∈ 1 ⊢ (∃y ∈ B (p(y, z) ∧ g(y) = w)).

Then, we can show the following:

w ∈ C, z ∈ 1 ⊢ (∃x ∈ A (g ◦ f)(x) = w) ↔ r(w, z).

□

Theorem 3.15. RelS is a locally posetal double category of relations for any model S of SEFAR.

From this, one can deduce that Rel satisfies the modular law, thus, Rel is an allegory.
Furthermore, we can prove that Rel is a division allegory using the universal quantifiers. This means

that Rel has all right extensions and right liftings.

Proposition 3.16. Rel has all right extensions and right liftings.

Proof. The right extension of q : A C along p : A B is attained by the following formula:

y ∈ B, z ∈ C ⊢ ∀x ∈ A (p(x, y) → q(x, z)).

The existence of right liftings is proved similarly, or just by the involutive property of Rel. □

Power sets. We introduce another axiom of SEFAR.

Axiom 3 (Power set). For any A : Set, there exist a set P (A) and a relation εA : A P (A) and
a dependent term

p : A 1 ⊢ γ(p) ∈ P (A)

such that
∀x ∈ A,∀p : A 1, ∀y ∈ P (A) (y = γ(p) ↔ (p(x) ↔ εA(x, y))) .

Proposition 3.17. Rel has power objects. That is, for any object A, the functor Rel(A,−)
from Setop to Set defined by restriction has a representing object.

Proof. Let A be an object of Rel. We show that εA : A P (A) is a universal element of Rel(A,−).
Let B be an object of Rel and p : A B be a relation. Then, we have the following term-judgment:

y ∈ B ⊢ γ (p(−, y)) ∈ P (A).

This gives a function f : B P (A) such that

x ∈ A, y ∈ B ⊢ p(x, y) ↔ εA(x, f(y)).

The uniqueness of f follows from the extensionality of functions and the uniqueness of γ(−). □

In particular, taking the identity relation IdA : A A, we get the function {−} : A P (A). More-
over, we can define ∅A ∈ P (A) by ⊥ : A 1. By tabulating the relation from P (A) to P (B) corre-
sponding to the formula

x ∈ P (A), y ∈ P (B) ⊢ ∃a ∈ A (x = {a} ∧ y = ∅B) ∨ ∃b ∈ B (x = ∅A ∧ y = {b}),
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we can define the disjoint coproduct A ⊔B of A and B.
If we assume the unique choice axiom Axiom UC, we can construct the exponentials in Set from

the power objects since we can define the condition of being a function internally. However, we do not
assume Axiom UC in SEFAR, there is no expectation that we can construct the exponentials in Set
from the power objects. Therefore, attention should be paid to a pair of alternative axioms of SEFAR.

Axiom EXP (Exponentials). For any A,B : Set, there exists a set BA such that a function of
form A B corresponds to an element of BA.

Axiom SC (Subset classifier). There exists a set Ω and a relation τ : Ω 1 and a dependent
term

p : A 1 ⊢ γ(p) : A Ω

such that

∀p : A 1,∀f : A Ω, ∀x ∈ A, (f(x) = γ(p)(x) ↔ (p(x) ↔ τ(f(x)))) .

Proposition 3.18. (i) If we assume Axioms EXP and SC,then Axiom 3 holds.
(ii) If we assume Axioms 0 to 3, then Axiom SC holds.
(iii) If we assume Axioms 0 to 3 and Axiom UC, then Axiom EXP holds.

Mimicking the proof in [Joh02, Remark A2.4.10], we can prove the following:

Proposition 3.19. Under the axioms of SEFAR, Rel has partial function representers, where
a partial function is a relation p : A B such that pp◦ ≤ IdA.

According to [Wyl91, §19], a finitely complete category with a proper stable factorization system
(E,M) is a quasitopos, if and only if it has a M-partial function representers and is cartesian closed.
Therefore we have the following:

Theorem 3.20. Under the axioms of SEFAR Axioms 0 to 3 with Axiom EXP, Rel is a double
category of strong relations on a quasitopos. Hence, if we assume AxiomUC, then Rel is a double
category of relations on a topos.

We can also define the quotient of an equivalence relation p : A A.

Lemma 3.21. For any A : Set and any equivalence relation p : A A, there exists a set A/p
and a surjection g : A A/p such that

x, x′ ∈ A ⊢ g(x) = g(x′) ↔ p(x, x′).

Proof. See [nLa23d, Theorem 2.14]. □

On the other hand, the universal property of quotients is not provable in SEFAR without AxiomUC.
This suits our intuition that Cauchy double categories are counterparts of regular categories. However,
we can prove the following:

Proposition 3.22. For a locally-posetal double category of relations D with power objects, every
symmetric monoid p : A A is a kernel of the corresponding vertical arrow fp : A P (A).

Proof. There must be a better proof via double category. Let p : A A be a symmetric monoid. Take
a tabulator C of p with l : C A and r : C A. The symmetricity of p implies that there exists an
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isomorphism i : C C such that l ◦ i = r and r ◦ i = l. The transitivity of p then implies that the
pullback P of r and l factors through ⟨l, r⟩ : C A×A as follows:

P

C C

A A A

A A

m n

l r l r

p p

p

=

P

C

A A

f

l r

p

.

By the diagrammatic reasoning in [HN23] shows that the extension of l ◦m along n is a restriction of
p along l, and also a restriction of p along r.

P

A C

A

A P (A)

l◦m n
opcart

l

cart
fp

∈

,

P

A C

A

A P (A)

l◦m n
opcart

r

cart
fp

∈

Therefore, fp ◦ l = fp ◦ r holds, and there exists a cell

A A

P (A)
fp

p

fp
.

If fp ◦ g = fp ◦ h holds for some g, h : B A, then the restriction of p along idA and h is equal to
the restriction of ∈ along idA and fp ◦ h = fp ◦ g, so we have g∗ ⊆ p(idA, h). This leads to a cell

B

A A

g h

p

.

Thus, p is a kernel of fp. □

From this observation, it may or may not be reasonable to assume another axiom of SEFAR: that
is the existence of quotients of kernel relations.

Infinity. The axiom of infinity in SEAR is the following:

Axiom 4 (Infinity). There exists a set N , an element o, and a function s : N N such that

∀x, y ∈ N s(x) = s(y) → x = y,

∀x ∈ N s(x) ̸= o.

Collection. By an A-indexed family of sets, we mean a relation p : X A from a set X. Let pa
denote the tabulation of the restriction of p along a : 1 A. Then, pa is a subset of X.

Axiom 5 (Collection). For any A : Set and any first-order formula ϕ(x,X) with free variable
x ∈ A, and a set-variables X, there exists sets B, a function g : B A, and a B-indexed family
of sets p : Y B such that

(i) ∀b ∈ B ϕ(g(b), pb) holds, and
(ii) ∀a ∈ A,∀X : Set (ϕ(a,X) → ∃b ∈ B a = g(b)) holds.

It is observed in the nLab page of SEAR that these axioms Axioms 0 to 5 in SEAR have equivalent
strength to the axioms of ZF. Therefore, in SEFAR, we can prove that the set of axioms Axioms0 to 5
and axioms FE to FO with Axiom UC is equivalent to the axioms of ZF.
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4. Prospects

Dropping the axiom of unique choice can open up a possibility of Bishop-style constructive set
theory, in SEFAR. The foundation without unique choice is investigated by Maietti and Sambin as
the minimalist foundation . The minimalist foundation, devised by Maietti [Mai09], is a foundation
with two different levels: the extensional level and the intensional level. The interaciton between the
two levels is conducted by the setoid construction of the extensional level by the intensional level.
Intuitively, the extensional level is a stage of mathematics, and it seems natural to me that the level
be presented as a double category.
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