Double categories of relations relative to factorisation systems Hayato Nasu RIMS, Kyoto 木曜セミナー 16 November 2023 jww Keisuke Hoshino

Introduction

Objects Morphisms in C + in C + $R \rightarrow A \times B$ Spans in C + $X \rightarrow A \times B$ $X \rightarrow A \times B$

Nouble categories Rel(E), Span(E).
What is a common generalization?
How can we characterize them?

Structure

- 1. Double categories
- 2. How should double categories of relations be?
- 3. The correspondence between DCRs and SOFSs

This talk is based on

Double categories of relations relative to factorisation systems, ArXiv 2310. 19428

3 / 32

1. Double categories

- 2. How should double categories of relations be?
- 3. The correspondence between DCRs and SOFSs

Cauchy double categories of relations4. Conclusions and future work

Double categories

- A double category D consists of the following data:
 - objects A, B, C. ...
 - vertical arrows f,...
 - horizontal arrows A + B,...

with compositions of vertical arrows / horizontal arrows / cells such that

Examples

5/32

Rel (Set) Objects : sets , vertical arrows : functions horizontal arrows : (binary) relations composition of horizontal arrows : $\begin{array}{c} A \xrightarrow{R} B \xrightarrow{S} C := A \xrightarrow{} C \xrightarrow$ cells : In this case, at most one cell can exist for each frame. ∀α∈Α ∀ς∈C $aRc \implies f(a) Sg(c)$

Examples

6 / 32

Span(C) for a finitely complete category C objects : objects in &, vertical arrows : arrows in & $A \xrightarrow{R} B$ horizontal arrows : spans $A \xleftarrow{l_R} R \xrightarrow{r_R} B in \mathcal{P}$ composition of horizontal arrows : $A \xrightarrow{R} B \xrightarrow{S} C := A \xleftarrow{Q_R} R \xleftarrow{F_S} S \xrightarrow{F_S} C$ rr Brls $\begin{array}{ccc} cells : & A \xrightarrow{R} C \\ & f \downarrow & \alpha & \downarrow g \\ & B \xrightarrow{r} & D \end{array} \begin{array}{ccc} A \xleftarrow{l_R} R \xrightarrow{r_R} C \\ & f \downarrow & Q & \downarrow a \\ & B \xleftarrow{l_S} S \xrightarrow{r} D \end{array} \begin{array}{ccc} A \xleftarrow{l_R} R \xrightarrow{r_R} C \\ & f \downarrow & Q & \downarrow a \\ & B \xleftarrow{l_S} S \xrightarrow{r} D \end{array}$

Some Definitions

- D: a double category
- the vertical category V(D) is a category consisting of objects and vertical arrows in D_{\cdot}
- the horizontal bicategory $\mathcal{H}(D)$ is a bicategory whose O-cells are objects, 1-cells are horizontal arrows, and 2-cells are

cells with the identity vertical arrows in D.

 $\mathcal{H}(D)$ $A \xrightarrow{R} B := A \xrightarrow{R} B$

Historical Remarks

| ୪ /32

R	el Span
[984	Carboni, Kasangian, and Street defined bicategories of spans and bicategories of relations on regular categories.
1987 •	Carboni and Walters characterized bicategories of relations on regular categories
2010	Lack, Walters, and Wood characterized bicategories of spans.
2018	Aleiferi characterized? double categories of spans JDC
2022	Lambert characterized double categories of relations On regular categories

Historical Remarks continued & Motivations 9/32
Kelly defined bicategories of relations relative to
stable proper factorization systems (E, M).
L e.g., (Surj, Inj) in Set
M-relation
$$A \xrightarrow{R} B \parallel R \longrightarrow A \times B \in M$$

Motivation
To characterize double categories of relations
relative to stable orthogonal factorization systems.

This treatment includes DCs of spans/relations.

Some Definitions

Definition A stable orthogonal factorization system (SOFS) on a category E is a pair of classes of morphisms (E,M) such that: (i) E and M are closed under composition and contain iso's. (ii) E and M are orthogonal : $\exists !$ $\exists ?$ $\exists ?$ (iii) Every morphism in C is factored as $\longrightarrow \longrightarrow \longrightarrow \longrightarrow$ (iv) E is stable under pullback. E M It is proper if M S Mono, E S Epi Rel_(EM) (C) is the double category whose vertical arrows are arrows in C and horizontal arrows are M-relations.

Why double categories? A. They have potentials of rich structures and enable us to describe behaviours of relations effectively!

× have no compositions O have `functions'on the base

$$\begin{array}{c} A \xrightarrow{R} C \\ f \downarrow & \land I & \downarrow g \\ B \xrightarrow{S} D \end{array}$$

⇒B

- 1. Double categories
- 2. How should double categories of relations be?
- 3. The correspondence between DCRs and SOFSs

Characterisation Theorem

Theorem [HN.]
 For a double category D, the following are equivalent:
 (i) D ≃ Rel_(E,M)(E) for some SOFS (E,M) on some finitely complete category C.
 (ii) D is a cartesian equipment, has Beck-Chevalley pullbacks, and admits an M-comprehension scheme for some M.

described by double categorical properties

12/32

Cartesian double categories

- Since M-relations $A \rightarrow B$ are defined as M-subobjects of $\underline{A \times B}$, we assume double categories to be cartesian.
- A double category D is cartesian iff (if it is an equipment)
 - -V(D) has finite products
 - $\mathcal{H}(\mathbb{D})$ has local finite products, i.e., $\mathcal{H}(\mathbb{D})(A,B)$ has finite products for any $A, B \in \mathbb{D}$
 - these products 'respect' horizontal composition

More precisely, it is a cartesian object in the 2-cat Dbl Cat.

Functions \rightarrow Relations

In Rel(Set), every function $f: A \rightarrow B$ defines binary relations called the graphs of f:

$$A \xrightarrow{\tau_{*}} B := \{(a,b) \mid f(a) = b\},\$$
$$B \xrightarrow{f^{*}} A := \{(b,a) \mid b = f(a)\},\$$

Remark the identity horizontal arrow in Rel(Set) is defined by the equality relation =.

We have two cells

$$\begin{array}{cccc} A \xrightarrow{f_{*}} B & A \xrightarrow{=} A \\ f \downarrow & \wedge i & \parallel & & \parallel & \wedge i & \downarrow f \\ B \xrightarrow{=} B & A \xrightarrow{f_{*}} B \\ \end{array}$$

In an equipment, for $f \downarrow \qquad J_{\vartheta}$, $f \stackrel{f_{\ast}}{\longrightarrow} B \stackrel{R}{\longrightarrow} D \stackrel{g^{\ast}}{\longrightarrow} C$ $B \stackrel{R}{\longrightarrow} D$, $f \stackrel{R}{\longrightarrow} B \stackrel{R}{\longrightarrow} D \stackrel{g^{\ast}}{\longrightarrow} C$ is the universal cell, This is called restriction of R $E \xrightarrow{S} F$ $S \downarrow S \downarrow S$ $A \xrightarrow{S} I$ $F \downarrow I$ $F \downarrow I$ E → F along f and g. $= \bigwedge_{\substack{f \in \mathcal{F}_{k} \\ f \neq Rg^{*}}} A \xrightarrow{f \in Rg^{*}} A$ A cell with such a universal B→D B → D property is called cartesian. A → C Example In Rel(Set), f Cart Ja {(a,c) | f(a) R g(c)} ₿_;j→Ď

Restrictions / extensions

Restrictions / extensions

Dually, for
$$f \downarrow \qquad \downarrow 9$$
, an extension $f \downarrow \qquad \downarrow 9$ is the universal
cell for domnward composition. Such a cell is called opcartesian.
Example In Rel (Set), $A \xrightarrow{\oplus} C$
 $f \downarrow opcart \downarrow 9$
In particular, $f \xrightarrow{\oplus} D$
 $B \xrightarrow{\oplus} D$
 $\left\{ (f(a), g(a)) \mid a \in A \right\}$

Relations \rightarrow Functions

In Set, a relation
$$A \xrightarrow{R} B$$
 is expressed by two projections
from $|R| = \{(a,b) \mid aRb\}$: $A \xleftarrow{\pi_1} |R| \xrightarrow{\pi_2} B$.
These two morphisms have the following property:

$$\begin{cases} (f(x),g(x)) \\ n \\ R \\ A \xrightarrow{R} B \end{cases} \xrightarrow{f' \land I} \xrightarrow{g} B = \begin{cases} f \swarrow I \\ \pi_1 \\ R \\ A \xrightarrow{R} B \\ A \xrightarrow{R} B \end{cases}$$
Moreover, $A \xrightarrow{R} B$ is recoverable from π_1 and π_2 :

$$\begin{cases} \pi_1 \land \pi_2 \\ R \\ A \xrightarrow{R} B \\ A \xrightarrow{R} B \end{cases}$$
 $R = \{ (\pi_1(x), \pi_2(x)) \}$

Relations -> Functions

Plus, a relation $A \xrightarrow{R} B$ is a subset R of $A \times B$. In general, we expect a relation $A \xrightarrow{R} B$ to be a "sub" of $A \times B$.

Relations -> Functions

20/32

A class M of morphisms in a category is called a stable system if it contains all iso's, is closed under composition, and stable under pullback. For a stable system M, an M-relation R: A \rightarrow B is a morphism $R \rightarrow A \times B$ in M.

In Rel(Set),
$$\binom{|R|}{k}$$
 $\binom{|R|}{k}$; tabulator $\Rightarrow \qquad \int \langle l, r \rangle \in M$ ono.
 $A \xrightarrow{\tau}{R} B$: tabulator $\Rightarrow \qquad A \times B$
For a horizontal arrow R, its tabulator $\binom{|R|}{k}$ is called
an M-tabulator if $\langle l, r \rangle \in M$.

M-comprehension scheme

D is said to admit an M-comprehension scheme if the adjoints are equivalences.

Characterisation Theorem

Theorem [HN.]
For a double category D, the following are equivalent:
(i) D ≃ Rel_(E,M)(E) for some SOFS (E,M) on some finitely complete category C.
(ii) D is a cartesian equipment, has Beck-Chevalley pullbacks, and admits an M-comprehension scheme for some M.

Remark Another equivalent condition is given in the paper without "the variable M", and purely double categorically.

24/32

SOFS (E,M)	M-relations	Rel _(E,M)
(Regepi, Mono) in a regular category	(usual) relations	Rel (E) [Lam21]
(Iso, Mor) in a finitely complete category	Spans	Span(E)
(Epi,Regmono) in a quasi-topos	strong relations	

- 1. Double categories
- 2. How should double categories of relations be?

3. The correspondence between DCRs and SOFSs

Cauchy double categories of relations
4. Conclusions and future work

Correspondence of SOFSs and DCRs

Properties of SOFSs are translated to those of DCRs

The correspondence of SOFSs and DCRs (TABLE1 in HN.)

Cauchy equipments

Cauchy equipments

27/32

An equipment \mathbb{D} is called Cauchy if any adjunction in $\mathcal{H}(\mathbb{D})$ is representable. (Paré 21)

Example

Prof_{cc}: double categories of small Cauchy complete categories, functors, and profunctors

Q. How does this condition behave in a DCR?

What is Cauchy DCR?

If we think of horizontal arrows as binary predicates $A \xrightarrow{P}_{a} B \longrightarrow \begin{cases} (unit) \forall a : A \exists b : B & P(a,b) \land Q(b,a) \\ (counit) \forall b, b : B, \forall a : A & Q(b,a) \land P(a,b') \rightarrow b = b' \end{cases}$ $\Rightarrow \forall a: A \exists ! b: B P(a, b)$ Cauchy condition behaves as the unique choice principle : $\forall a: A \exists i b: B P(a, b) \Longrightarrow \exists f: A \rightarrow B P = f_*$

Classical results

Proposition [Kelly 91]
For a proper SOFS (E,M),
a left adjoint M-relation is of the form
$$A \stackrel{e}{\leftarrow} \stackrel{\times}{\xrightarrow{f}} B$$

where $e \in E \cap M$ ono.
In particular, for a regular category E , Rel(E) is Cauchy.

A double category is called unit-pure if

$$A \neq A$$
 $A \neq A$
 $a \text{ cell of the form } f \downarrow \land \downarrow 9 \text{ must be } f \downarrow \neq \downarrow f$
 $B \neq B$ $B \neq B$
Theorem [HN.]
In a unit-pure DCR $\operatorname{Rel}_{(E,M)}(\mathcal{E})$, a horizontal left adjoint
is of the form $e \swarrow^{\times} f_{B}$ where $e \in E \cap Mono$.

Cauchy unit-pure DCR

We have

Cauchy unit-pure DCRs = DCRs with
$$Mono \subseteq M$$

because a unit-pure DCR is Cauchy iff

- 1. Double categories
- 2. How should double categories of relations be?
- 3. The correspondence between DCRs and SOFSs

Conclusions

- We defined double cotegories of relations and characterized them using comprehension schemes which involve some double-categorical universal properties.
- Cauchy DCRs are those admitting "unique choice" and correspond
 to SOFSs (E,M) with Mono CM.
- Other significant classes of SOFSs correspond to those of DCRs.

–	32/32			
Future Work				
Extending the c	orrespondences			
to non-stable	OFSs, AWFSs, etc.			
Developing logic in double categories				
double categories				
bicategories	fibered categories			
	(hyperdoctrines)			
horizontal composition <	existensial quantifier			
horizontal identity <	\rightarrow equality			

Thank you! hnasu@kurims.kyoto-u.ac.jp Hayato Nasu

References are [Ale18], [CKS84], [Kel91], [KIe70], [Lam22], [LWW10], [Par21], [Shu08], and others in the reference list of ArXiv 2310. 19428.