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What is the most Tundamenta] theorem

N (abSTVacT) algelova?

A The fundomental theorem of

l’\OYY\OVY\OVPhISW\S



For- groups PG >H ~ G/KerlP) = Im(P)

For ¥ings P:R™S ~ Rioriyy = Imle)

* For modules Y :M—-oN ~> M/ker(r) = ImlP)

he common idea of -/ Ker ()

idenJrH-\/img two elements thot qo 1o the same element

No !



Counter examp|e_ '-

f R ¢
C/Ker(Z) = | A t\L C/

What should be identified ? B =




Counter example.

C
¢ B B g [:3
A : C
\ £ B ¢
C/ker(E) = | A j}

I¢
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Quotient by kernels o1 19
A kegu\mr epimorphism is a coequalizer oF some Para\lel pair,

PYOPOSiTiOV\. C 'S cod'egovy W/ Pu”loacks

wc A—B is a Veg_ulav epimovPNSW\ Pa
P g l<€'r'(‘ﬂ_'—ﬁ A
& Ke\r(-S:) : A—B Coec,_ua.lizeh whevre Pl )
Pa A 7 R

S’I'a\r’ring from A 7 B, we obtaln a Sequence oF reg .epis
A—>A = A, A,

[ N Toniitel




"The image of a VnoPhnsw\ 02 |4
F-A—>B s a Strong epi morphism |-§1 A I (VW\ : mono)
£ )
B 4 v kYR

3

< - A — B 'FOLCTDY'S ﬂw\/ough no P"‘OPE’J" 8’7'5 B

/

I+ a w\ovFlm'usw\ F*A—RB can be Pvesen‘reo( oS
A ST

S“l’V.eP'l. mono
then +he Toctorization is unique up To isomorphism .

We coll T +he image oF ¥

/




keg,ePL

Sty eFi

Ja\

Akerl®) 577 T

03 |9

m (F)

When {req.epist = {st-. e_Pus} this morphism is an iso

P\roposmoh. _Ke,llx/ '69. Gabriel, Ulmer 1]
In o locally presentable category, the transfinite sequence

A —A, ﬁWA\).—’)'A\;

! +s N
N\\g .

STr. e|>l |

stabilizes of some A, and gives

A—> Ax B |
_Lm(%



The dec:omposiﬂon number- 04 119
Definition. [Galokie\, Ul mer /"I |, B'érger 'CH KN
The requlor (canonicel) decomposition number &(£) of A >, B
is the smallest o ot which Ao, | Al Aa s

Aﬁ?/\l _»A '_’)A
the seq . stabilizes ( Aw.aitiso). \\\>

The g\obal ke%ulak (canonical )

AecomPoSl‘hoV\ humloek S(t’) 0‘5: acaTegoky C IS
the smallest ¥ st. S(F) < ¥ For any fin &

Proposition. [Gabrie[, Ulmer"|,k N.]
C |oca|ly - PVQS‘QV\T&HQ g S(C) SANt I



E‘XaW\Ples o5 19
o G\rp ,Rihg.,Mod.MeRi S =2 Ker($) =2 A L %
3
o AV\\/ kegu,low ca‘l'ego\r\/ . g <2 A/KQP(S})S :-m(y)

+ 5(Pos ) =2
e $(Field)=1 (+ K =In )
. [Bedna\rczyk,e’r.ol. f‘?‘?] S(Cot) = 3

Any STVong epi 1S The comPosiTe o7 Two \regu\a\r ePis,

Vg In B 3 "Fl,--,,',Fn
9 =Fl)e- o BH)

(E{:A—aB is a Str. epi & sur).on ob) +




/s-‘a\\i S 3 /?\B k\
N
A L C BHE Ly %\H«%
\ \\LT’)) m s \Am y
i B =B T > Pe(h'f) T—C=+a(k\p)
/1°Y§ B kk > » e B k \
Ag' L ot =4 \F§ EE
\ e b C h’;zk A gi:;&vﬁc/
m M

S(BY=3 ~vy §(2-Cat) 24 .
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3. FOV‘ mode‘s O’S: POLVTiOL\ Hokh 'H’\QOV'IQS



Theories & models 07 149

GVP ~ {(x,xz_‘_)x(ir, ) a‘f.ouP} ~ FPCAT( ey, Set)
| I

15X X =X ] | axioms

Moo((‘_ﬂz.;‘,‘,\

Propesition, T : Lawvere theory = Mool (T) © regular

Theories > CaTegories oF models
B Mool ()




08 19

Equaﬁona| H\eon Lawvere ﬂneovy Ca’fegories o
(oPeraTiov\S + Ml"‘d a[ge.loms
%uafional oX oS ) FPCAT(—,Set)

Carfesian theory Categories Mod

[Johnstone 02] with finite limits

Essen’rially algeblroic theovy Mod Locadly Fintel

[Freyo T12] Y /

€Y Mod| presentable categories

partial Horn logic
[ Palmgren ,Vickers 0]

gev\evalizeol algebmic Theoky CI‘“"S/
[ Cortmell &1 [Joya[ 1]

Clon(-,Set)



Genevralized algebmic 'H\eory 09 19
(1-sorted) a\gebms

N Module * the cat. oF pairs (R,M)
YY\O.Y\y- sorted algebmg Mod(l‘{rm N )
TMModtle
— R, M

o: R, b:R + aebh: R
a:R, xM - aex: M

a:R bR, x,:.[vl
F—(aeb)ex=ar(bex):M



Genevalized algebraic 'H\eory 09 |9

1-sovted algebms Ca’t = Mod(TCat)
i, —ITCa.‘t
many - sorted algebrag — O
g x :0b, y:Ob F— Mop(x.¥)
depenokem—"sowrea( a(gebras X2 Ob b id.(x) : Mor (.30
TrModude . . , , : Mov ( v, 23
Sorts = R M x.Y,2:0b, £: Mor(x,9), 9
Operodors a:R, b:R F aeb:R — comp(%.9,2,5.4) : Mor(x.2)
a: R . x:M.i— aex M
Axioms a:R bR, x: M 1:0b, $ Mor(x, ) Feid(x)=F
i—-(aobB-Lﬁa'(bx):M :l"lonr(i,‘d)




[O 19
P roposition. [ Coxtmel 118, Adamek, Rosicky 94 ]
e - locally ‘P}h.l'l'e\)' Pkesewrable & AT :GAT € >~Mod ()

Given a GAT T, how can we know § (Mod () 7

Obsevrvation .
¢ B B g 3 5 [[3[ ¢
A . C ' A= C
L B:B,\ ff:‘k Ioleh‘ti?yina
Iolewhfymg < 5 ¢ > terms of
A C

-ol dent terms . z
non~ oepend=n " O(eFeholehcy ronk 1

1ol

{

B
-
h



The dependency rank ~v 8 114
Definition. Tn o GAT T. we define the dePeno(ency rank dr(A)
Jor each well-formed type [ A by
dr-(A) = max {o(k(BB | B appear in I—]{ +1
Example.  dy(0b) = | Cdr(Mor(x . y)) =2
We call T a non-descending it

 [FFf(xH:B : operotor symbc\
_ — > A
* 1 F't=SiB T oX1om = dY‘(B)_Y;\\t}{ dr (A)
ThEOYeVV\. [KN] —lT . ncn—descending-, M oox O{V(A\-ﬂ n
Ain T
= VY 9:M=>N iy Mod(T)  §HE)<h+1, hence §(Mod(T) S N2




—

"'xa_wxples [2 19

e nCot = Mod (et )

Fo x,x20F 1(Gx,x), 2x:0,9y: 1(x,X)F2(x,xvv)
X 'x/ :9_ | H',‘jrl H”: —\-(x,xf), 2 :.?: (I,I,,‘j,\jl) ’ 2/: I(X,x,,‘j(:"]”) « .
Fov-comp( .2, Y,Y, Y7, 2,27) + 2 (x,x"Y,y")
dr(nY=n+1, so §(nCat) <n+2. TInfact, S(hCot)=n+2.
e &(strMonCat) = 3 .

* $(st-DblCat) =4
e 3T :GAT with moxidr(AN =1. §(Mod(MTN=w+1



Stvategy of the prooT 1319

mox dr(A)=n T: non-o(escenolivxg
AinT ’

Mo — Ty — - > TMa=T :aseq. of theories
with  §(Mod (Th+()) < S(Mod(—ﬁi)\ +1 (9vi)

==

:XmmPle. T — Tsee = Teat = Toce = 7 ™ Thcat

We derive a sequence of their syntactic categories

Cr

— C, — = Cp=Cr

so the Plro\oleW\ reduces to Tind a nice propevty of these functors

g

he syntactic CaTeg_DViﬁs ove seen as clans.



Proot method : Clans 4 |4
'Exaw\Ple. T :GAT ~ (€, D)
objec.'['s > contfexts

Detinition. A clan is a Pai\f of

{' o category C, and

: morphisms . tuples of ‘re\rms"
e aclass of VY\OVF"\ISMS D orpniswm P

D’IT — {Pko)ec‘l"lDV\S A —D I—}
Mod (T) = Clan ( (&x,PT),Set )

¢ D : closed under comp .

s.t. contains all isos.
¢+ € has a terminal . Definition .
10— 1 eD (YO | Aclon morphism E:(€.D) = (€.
* € has P-\O-g OIOV\Q.VY\OPS nD. is a Yunctor $: -8 st
‘ DSFIJ—» CfeD - E(D)e D’
_ . * P Pwesevves the [imi+s in %.

C,—mC,



Simple clon w\ovPh}swxs 1S5 (19

We call a clan morphism & : (£,0) = (2,D") simple if
D' IS the "smal\esf Clah er.r’ Oh Zf/ thet includes
{d: "= &(C) e’ | deDd}

—xample. " Coot “— Ceat  is simple.

‘ tSe‘t — tlco:t Is not Siw\{>|e.

3
For the sequence T, — --. =T, €. L Cr.,, s simple.
- F
.« 4 % , .
P‘”OPOS"“OV\. C %_,‘C C vorl | the 2"cotregoky oF clans.

G simple = §(Mod(€)) < §(Mod(e)) + 1



1 The decompos'\ﬂon numbers

2. For models of generalizeol algelakaic theories

3. For models of Par’ria\ Horn theovies



Pa\rTial Horn |03'|c 16 19

Axioms are ollowed to be
Horn clauses, not just equations.

XY=x% |- Y=2

Operators are allowed o be partial

Cxample (categories)

(Ob,Mov,S:MOV—?Db,T:Mov—?Ob. ) —s(x) |7,
id: Ob>Mor, —o— " Mor xMor — Mor s-1. — id(t(x))o)(_-_—.x/

Teat @ portiel Hon Theory of codegeries

COCt ph MOO{ (—"-Cort>
Proposi‘HOV\. [P&lmgl’eV\, Vickers 07, Kawase 23]

e locally -f-ih'rre\y Pkesemable & 3T :Pou»ﬂal Horn th. C=Mod ()

~y



Upper bound oF $ us'mg PHL (Sketch) 1T 19
Theorem [KN.T  Tf T comes with a gauge of length 7,
For any $:M2N i Mod (T , $&) < ¥, Thus, $(Mod(T))< 7+1

Tdea: Layevivxg all ferms based on definedness

Example (a gauge (#.0) for Teot )

Terms
X :Ob.

P?in( (o) s(x) - Mov,

. \ id (00 Mor-

Yo : Moy }H | | &=

b o
{(e* ())‘f&/

[o

> Ord

('(, :A)':- O
& T is defined in T

#(TAY =1
{ T | e /'<\0‘.k(‘c}=o":('c)
in 1



Some Comments 18 (9

GAT approach vs PHL aPProach

o QAT gives Q. S’lmp|er woy +o
determine the upper bound of §

?or a limited case .

» PHL opproach is more 3enem|
(Qven ‘f’o\r 'ocally }\“Fvesewl'a‘o\e

CodregoriesS, lou'l' f{v\olivxga 3&\438
is not o simple task .

Omitted topics ([KN.T)

* The Vegular o(ecom[;osiﬁon gives

the most efficient waly fo Presey\‘f

o str.epi as o composite of reg.epis

-S: >
Iy %” p, = () sn
— o> —> - —»

e Qeneralizotion of the class of

regular eFimorphisms

(localization functors in Cat, eTc,)



Suvvwv\avy 19 (9

e The fundamental theorem of homomorphisms states that

strong epis & regulor epis in the category in question.

* They do not coincide in general, but in |.p. categories.

Strong eP'lS & transTinite Composites of \regular epis.

* The number of Vegu,ar eP'\s needed (= o(ecow\posi“l'ion humber )

can have an upper bound determined by GAT/PHL presentation

QA

PHL

The depeholency rank + 2 (when hon~o(esceno(in3\

The ,ehgj-k o a gouge + |
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T hank you |

Hayoto Nasu

Our preprint will be out soon.



Proo of & (Med () < §(Med(eN)+1 = Al A3
Lemme . XK. X . have Finite limits & colimits , K z L.
G

F:X=Y Xl stGf: str epl . , Sk(G’}) exists .
FGf

FGX —X FGQY
£>‘>l< >ré o ey ofF) S 8x(GF) + Gy (ef)
\Y
» 3
o (ObA) —>(0bB);
Exomple. Set = Cat , T:A—B ~ | .|
b A E(3)

Tdentification along_ with 0b%. S~
The Ob- part is w\chamg_ed reg. ePI /‘/JJJ




Why &(cs) < | 7 A2 A3

e
K z L *IF @q preserves pushouts and G:3.F. and
G' . .
FGX Fat, FGY then GCi IS AN IS0, SO Cf s in the Imoge o
Exd rd To: GlTaY = L.
S ¢y
X / E,F C’F

\%\ * This preserves Vec;[.olecovnposi’r]oms when G s
¥ i o Street Fibration , %0 Slegy< (6 Lg@,\r)

(—\s
Exoumple , Se'l: Cot Te
Ob F Mor(s,s")

Ob le S =~ {cafl'egov'«es € <t. Ob¥ =S} % : (s.57€ S

~ Mod (_lTs) 4o kegu‘aur (§52) No need fov dependency



Simple reflective sub = S(cs) < | A3 AR

A\
Given a simple clan inclusion With a veflection €5 €
T
we have 3
/-J_\ d the adjunction fits int
Mod (€) «—= Mod.(E), &% ™ &0 s o
L the situation in the previous slide
\/{' P

For MeMod(®), T/ M =~ Mod (BIM)) where

YIM — %”“M Mod (£0M)) — Mod ( §(MeAY) = Mod (€Y. a

! Il "z |

1 — e Mod (1) — Mod (M) =~ Mod(€)m
=]




